![]() |
Index | |
Index |
Mathematical Prerequisites
物理学のは嫌なので表現論に極振りしたいと思います
Gaussian integral \[ \qty(\prod_i \int \dd{\theta^*_i} \dd{\theta}_i) e^{-\theta^*_i B_{ij} \theta_j} = \qty(\prod_i \int \dd{\theta^*_i} \dd{\theta_i}) e^{-\sum_i \theta^*_i b_i \theta_i} = \det B. \] \[ \qty(\prod_i \int \dd{\theta^*_i} \dd{\theta_i}) \theta_k \theta^*_l e^{-\theta^*_i B_{ij} \theta_j} = (\det B) (B^{-1})_{kl}. \]
Theorem. If \(N=2l\), then representations of dimension \(2^l\) are equivalent.
We define \[ \color{orange}\gamma^5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3, \] which satisfies the same conditions as \(\gamma_0\) to \(\gamma_4\):
We define
The Weyl or Chiral representation is given by \[ \gamma^0 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix},\quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}. \]
Or, \[ \gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ \overline{\sigma}^\mu & 0 \end{pmatrix}. \]
Under this representation, \[ \gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} -\mathbb{1} & 0 \\ 0 & \mathbb{1} \end{pmatrix}. \]
Useful identities of \(\sigma\):
Useful identities of \(\gamma\):
Vectors are transformed in the familiar way: \[ \partial_\mu \phi(x) \rightarrow (\Lambda^{-1}){^\nu}{_\mu} (\partial_\nu \phi) (\Lambda^{-1} x). \]
On the LHS we have quantities in the old frame while on the RHS in the new frame.
For a general \(n\)-component multiplet, the transformation law is given by an \(n\)-dimensional representation of the Lorentz group: \[ \color{red} \varphi_a(x) \rightarrow U^{-1}(\Lambda) \varphi_a(x) U(\Lambda) = L{_a}{^b}(\Lambda) \varphi_b(\Lambda^{-1}x). \] This is the most general transformation rule! You should fucking remember it! As well as its infinitesimal form! \[ \color{red} \varphi_a(x) \rightarrow (\delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b}) \varphi_b. \] Don't give a shit to \(S^{\mu\nu}\) now. We don't know it until we obtain a specific representation of the Lorentz group.
In infinitesimal form,
Go back and see the transformation rule (marked in red). Left-handed / right-handed spinors transforms according to the \(S^{\mu\nu}_{\mathrm{L}}\) / \(S^{\mu\nu}_{\mathrm{R}}\) specified below \[ \color{red} \psi_a(x) \rightarrow (\delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b}) \psi_b. \] where \begin{align*} \color{blue}S^{0i}_{\mathrm{L}} &\color{blue}= -\frac{i}{2}\sigma^i, \\ \color{blue}S^{0i}_{\mathrm{R}} &\color{blue}= +\frac{i}{2}\sigma^i, \\ \color{blue}S^{ij}_{\mathrm{L}/\mathrm{R}} &\color{blue}= \frac{1}{2}\epsilon^{ijk} \sigma^k.\\ \end{align*} Or, written explicitly, as \begin{align*} \color{red}\psi_{\mathrm{L}} &\color{red}\rightarrow (1 - \frac{i}{2}\vb*{\theta}\cdot \vb*{\sigma} - \frac{1}{2}\vb*{\beta}\cdot \vb*{\sigma})\psi_{\mathrm{L}}, \\ \color{red}\psi_{\mathrm{R}} &\color{red}\rightarrow (1 - \frac{i}{2}\vb*{\theta}\cdot \vb*{\sigma} + \frac{1}{2}\vb*{\beta}\cdot \vb*{\sigma})\psi_{\mathrm{R}}. \end{align*}
Dirac spinors has four components. It transforms according to \[ \color{red} \psi_a(x) \rightarrow (\delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b}) \psi_b. \] where \[ \color{blue} S^{\mu\nu} = \frac{i}{4}[\gamma^\mu,\gamma^\nu] = \begin{pmatrix} S^{\mu\nu}_{\mathrm{L}} & 0 \\ 0 & S^{\mu\nu}_{\mathrm{R}} \end{pmatrix}. \]
The upper two components transforms like a left-handed spinor while the lower two like a right-handed. \[ \color{orange} \psi = \begin{pmatrix} \psi_{\mathrm{L}} \\ \psi_{\mathrm{R}} \end{pmatrix}. \]
In Peskin the exponent of the infinitesimal transform is denoted by \(\Lambda_{1/2}\): \[ \delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b} \xrightarrow{\exp} \Lambda_{1/2} = \exp\qty(-\frac{i}{2}\omega_{\mu\nu}S^{\mu\nu}). \]
We define \[ \color{orange} \overline{\psi} = \psi^\dagger \gamma^0. \]
The transformation laws are given by
Definition | Count |
---|---|
\(1\) | 1 |
\(\gamma^\mu\) | 4 |
\(\gamma^{\mu\nu} = \gamma^{[\mu}\gamma^{\nu]} = -i\sigma^{\mu\nu}{}\) | 6 |
\(\gamma^{\mu\nu\rho} = \gamma^{[\mu}\gamma^{\nu}\gamma^{\rho]}{}\) | 4 |
\(\gamma^{\mu\nu\rho\sigma} = \gamma^{[\mu}\gamma^{\nu}\gamma^{\rho}\rho^{\sigma]}{}\) | 1 |
\(\overline{\psi} \gamma^{\mu\nu} \psi\) transforms like a tensor of rank 2: \[ \overline{\psi} \gamma^{\mu\nu} \psi \rightarrow \Lambda{^\mu}{_\alpha} \Lambda{^\nu}{_\beta} \overline{\psi} \gamma^{\alpha\beta} \psi. \]
Definition | Transformation | Count |
---|---|---|
\(1\) | \(\overline{\psi}\psi\): scalar | 1 |
\(\gamma^\mu\) | \(\overline{\psi}\gamma^\mu\psi\): vector | 4 |
\(\displaystyle \sigma^{\mu\nu} = \frac{i}{2}[\gamma^\mu,\gamma^\nu]\) | \(\overline{\psi}\sigma^{\mu\nu}\psi\): tensor | 6 |
\(\gamma^\mu \gamma^5\) | \(\overline{\psi}\gamma^\mu\gamma^5\psi\): pseudo-vector | 4 |
\(\gamma^5\) | \(\overline{\psi}\gamma^5\psi\): pseudo-scalar | 1 |
![]() |
Quantum Field Theory (II) | |
Quantization of Fields |