Setup
Ӏ have played Bingo Ρlus foг s᧐me time, and I really "Love" the game. Ӏ am not averse tօ the ads there is јust enough. If it ggot ɑny more, it's the issue. The game is smooth, ɑnd I lovfe Ι am aЬle to control the speed ɑnd the colors on every level аre amazing.. It is aⅼso рossible to tаke part in oother games whіⅼe trying to comρlete regular levels, ѡhich is gгeat. Tһanks ffor tһe game! !
漢文これくしょん
此四君者,皆以客之功。由此觀之,客何負於秦哉?向使四君卻客而不內,疏士而不用;是使國無富利之實,而秦無強大之名也。
不問可否,不論曲直,非秦者去,為客者逐。然則是所重者,在乎色、樂、珠、玉,而所輕者在乎人民也...
夫物不產於秦,可寶者多;士不產於秦,而願忠者衆。今逐客以資敵國,損民以益讎,內自虛而外樹怨於諸侯,求國之無危,不可得也。
陵謂足下,當享茅土之薦,受千乘之賞;聞子之歸,賜不過二百萬,位不過典屬國,無尺土之封,加子之勤。而妨功害能之臣,盡為萬戶侯;親戚貪佞之類,悉為廊廟宰。子尚如此,陵復何望哉?且漢厚誅陵以不死,薄賞子以守節,欲使遠聽之臣,望風馳命,此實難矣。所以每顧而不悔者也。陵雖孤恩,漢亦負德。
後之視今,亦由今之視昔,悲夫!
使天下之人,不敢言而敢怒。獨夫之心,日益驕固。
秦人不暇自哀,而後人哀之。後人哀之,而不鑑之,亦使後人而復哀後人也。
A brief introductory example may be found in Concepts versus SFINAE-based constraints.
This article is inspired by Item 26 and 27 of Modern Effective C++ by Scott Meyers, 2014.
Universal reference is the terminology in Modern Effect C++, which basically refer to T&&
in template functions.
The following code should be short and clear enough.
#include <iostream>
class Person
{ };
class SpecialPerson: public Person
{ };
template<typename T>
void handle(T&& person)
{
std::cout << "Handle person." << std::endl;
}
void handle(int number)
{
std::cout << "Handle number." << std::endl;
}
int main()
{
Person p;
SpecialPerson sp;
int i = 0;
short s = 0;
handle(p);
handle(sp);
handle(i);
handle(s);
}
The behavior is, however, puzzling. It prints
Handle person.
Handle person.
Handle number.
Handle person.
Why did the last line print Handle person.
? This is because handle(int)
requires a conversion in this case while in handle(T&&)
the compiler could infer T = short
and provide a perfect match.
We may resort to the C++98 approach and declare handle
like the following.
void handle(const Person &);
void handle(int);
However, what if we want to retain perfect forwarding? In such case universal reference is inevitable. The problem may be rephrased as follow: const Person&
and Person&&
are too restrictive as they matches only lvalue or rvalue reference. T&&
is too generic as it matches reference to any type. We need something somewhere between.
A simlar problem exists in C#.
using System;
class Person
{ }
class SpecialPerson: Person
{ }
public class Program
{
private static void handle<T>(T person)
{
Console.WriteLine("Handle person.");
}
private static void handle(int number)
{
Console.WriteLine("Handle number.");
}
public static void Main()
{
Person p = new Person();
SpecialPerson sp = new SpecialPerson();
int i = 0;
short s = 0;
handle(p);
handle(sp);
handle(i);
handle(s);
}
}
The above code prints the following.
Handle person.
Handle person.
Handle number.
Handle person.
What surprises us is the last line, where
short s = 0;
handle(s);
prints
Handle person.
instead of
Handle number.
Imposing constraints on handle
solves the problem.
This code is tested with C#6.0. Compilation may fail with older versions.
using System;
class Person
{ }
class SpecialPerson: Person
{ }
public class Program
{
private static void handle<T>(T person) where T: Person
{
Console.WriteLine("Handle person.");
}
private static void handle(int number)
{
Console.WriteLine("Handle number.");
}
public static void Main()
{
Person p = new Person();
SpecialPerson sp = new SpecialPerson();
int i = 0;
short s = 0;
handle(p);
handle(sp);
handle(i);
handle(s);
}
}
Now the program correctly prints
Handle person.
Handle person.
Handle number.
Handle number.
Question: What is the counterpart of where
in C++?
SFINAE stands for substitution failure is not an error. In this case, we make use of std::enable_if
and implement handle
in the following way.
#include <iostream>
class Person
{ };
class SpecialPerson: public Person
{ };
template<typename T,
typename = std::enable_if_t<
std::is_base_of_v<Person, std::decay_t<T>>
>
>
void handle(T&& person)
{
std::cout << "Handle person." << std::endl;
}
void handle(int number)
{
std::cout << "Handle number." << std::endl;
}
int main()
{
Person p;
SpecialPerson sp;
int i = 0;
short s = 0;
handle(p);
handle(sp);
handle(i);
handle(s);
}
It works correctly now and prints
Handle person.
Handle person.
Handle number.
Handle number.
Concept is introduced in C++20 and enables the following more straightforward implementation closer to where
in C#.
#include <iostream>
#include <concepts>
class Person
{ };
class SpecialPerson: public Person
{ };
template<typename T> requires std::derived_from<std::decay_t<T>, Person>
void handle(T&& person)
{
std::cout << "Handle person." << std::endl;
}
void handle(int number)
{
std::cout << "Handle number." << std::endl;
}
int main()
{
Person p;
SpecialPerson sp;
int i = 0;
short s = 0;
handle(p);
handle(sp);
handle(i);
handle(s);
}
It works also correctly now and prints
Handle person.
Handle person.
Handle number.
Handle number.
Definitions and Diagrams
This post is not aiming at giving a systematic introduction to Green's functions in condensed matter physics. Rather, it is written in a spaghetti pattern that intertwines many related or unrelated materials. For a systematic approach, see my note on quantum field theory.
In condensed matter physics, it's a common task for us to evaluate the expectation value of a certain operator (for the ground state) \[ \begin{align*} \langle \mathscr{J}(\vb{x}) \rangle &= \frac{\bra{\Omega} \mathscr{J}(\vb{x}) \ket{\Omega}}{\bra{\Omega}\ket{\Omega}} \\ &= \pm i \lim_{t\rightarrow t^+} \lim_{\vb{x}' \rightarrow \vb{x}} \sum_{\alpha\beta} J_{\beta\alpha}(\vb{x}) G_{\alpha\beta}(\vb{x}t, \vb{x}'t') \\ &= \pm i \lim_{t\rightarrow t^+} \lim_{\vb{x}' \rightarrow \vb{x}} \tr[J(\vb{x}) G(\vb{x}t,\vb{x}'t')]. \end{align*} \] for \[ \mathscr{J}(\vb{x}) = \sum_{\alpha\beta} \psi_\beta^\dagger(\vb{x})J_{\beta\alpha}(x) \psi_\alpha(\vb{x}) \] where we have defined the Green's function \[ iG_{\alpha\beta}(\vb{x}t;\vb{x'}t') = \frac{\bra{\Omega} T[\psi_\alpha(\vb{x}t) \psi^\dagger_\beta(\vb{x}'t')]\ket{\Omega}}{\bra{\Omega}\ket{\Omega}}. \]
A few remarks are in order here:
- The number density is given by \[n_{\alpha\beta}(\vb{x}) = \pm i \tr G(\vb{x}t; \vb{x}t^+).\]
- The spin density is given by \[\langle \vb*{\sigma}(\vb{x}) \rangle = \pm i \tr[\vb*{\sigma} G(\vb{xt;\vb{x}t^+})].\]
Surprisingly, we don't need the four-point function in order to evaluated the interaction term. After some calculation we find for \[ V(\vb{x},\vb{x}')_{\alpha\alpha',\beta\beta'} = V(\vb{x}',\vb{x})_{\beta\beta',\alpha\alpha'}. \] that \[ \langle H \rangle = \pm \frac{1}{2}i \int \dd{^3 x} \lim_{t'\rightarrow t^+}\lim_{\vb{x}' \rightarrow \vb{x}} \qty[i\hbar \pdv{}{t} - \frac{\hbar^2 \grad^2}{2m}] \tr G(\vb{x}t; \vb{x'}t'). \]
Useful, right? Now the question becomes how do we evaluate Green's functions. Before we open the Pandora's box of Feynman diagrams, let's see how do we handle the case of finite-temperature.
At non-zero temperature, we have the similar result \[ \begin{align*} \langle J \rangle &= \Tr(\rho_G J) \\ &= \mp \sum_{\alpha\beta} \int \dd{^3 x} \lim_{\vb{x}'\rightarrow\vb{x}} \lim_{\tau'\rightarrow\tau^+} J_{\beta\alpha}(x) \mathscr{G}_{\alpha\beta}(\vb{x}\tau; \vb{x}'\tau') \\ &= \mp \int \dd{^3 x} \lim_{\vb{x}' \rightarrow \vb{x}} \lim_{\tau'\rightarrow \tau^+} \tr[J(x)\mathscr{G}(\vb{x}\tau; \vb{x}'\tau')], \end{align*} \] where we have defined the Matsubara Green's function \[ \mathscr{G}_{\alpha\beta}(\vb{x}\tau;\vb{x}'\tau') = -\Tr[\rho_G T_\tau[\psi_{\alpha}(\vb{x}\tau) \psi^\dagger_{\beta}(\vb{x}'\tau')]], \] the modified Heisenberg picture (i.e. \(\tau = it\)) \[ \begin{align*} \psi_{\alpha}(\vb{x}\tau) &= e^{K\tau/\hbar} \psi_\alpha(\vb{x}) e^{-K\tau/\hbar}, \\ \psi_{\alpha}^\dagger(\vb{x}\tau) &= e^{K\tau/\hbar} \psi_\alpha^\dagger(\vb{x}) e^{-K\tau/\hbar}, \end{align*} \] and the statistical properties \[ \begin{align*} K &= H - \mu N, \\ Z_G &= e^{-\beta\Omega} = \Tr e^{-\beta K}, \\ \rho_G &= Z^{-1}_G e^{-\beta K} = e^{\beta(\Omega - K)}. \end{align*} \]
With average density \(\langle n \rangle = N/V\) fixed, the expectation value of interation energy is given by \[ \langle V \rangle = \frac{1}{2} \int \dd{^3 x} \int \dd{^3 x'} V(\vb{x} - \vb{x}')[\langle \tilde{n}(\vb{x}) \tilde{n}(\vb{x}') \rangle + \langle n(\vb{x})\rangle \langle n(\vb{x}) \rangle - \delta(\vb{x} - \vb{x}')\langle n(\vb{x}) \rangle]. \] where we have defined \(\tilde{n}(\vb{x}) = n(\vb{x}) - \langle n(\vb{x})\rangle\). The last two terms are essentially constants and may therefore be discarded. Now our goal becomes evaluating the polarization propagator (or the four-point function) \[ iD(x, x') = \frac{\bra{\Omega} T[\tilde{n}_H(x') \tilde{n}_H(x)] \ket{\Omega}}{\bra{\Omega} \ket{\Omega}}. \] Its non-interacting counterpart is defined by \[ iD^0(x',x) = \bra{0} T[\tilde{n}_I(x')\tilde{n}_I(x)] \ket{0}. \] Now the expectation value \(\langle V \rangle\) could be divided into the non-interacting contribution and the interating contribution \[ \begin{align*} \langle V \rangle &= \frac{1}{2} \int \dd{^3 x} \dd{^3 x'} V(\vb{x} - \vb{x}')[iD^0(\vb{x}'t, \vb{x}t) + n^2 - \delta(\vb{x} - \vb{x}')n] + \frac{1}{2}\int \dd{^3 x} \dd{^3 x'} V(\vb{x} - \vb{x}')[iD(\vb{x}'t, \vb{x}t) - iD^0(\vb{x}'t, \vb{x}t)] \\ &= \bra{\Phi_0} V \ket{\Phi_0} + \frac{1}{2}\int \dd{^3 x} \dd{^3 x'} V(\vb{x} - \vb{x}')[iD(\vb{x}'t, \vb{x}t) - iD^0(\vb{x}'t, \vb{x}t)]. \end{align*} \]
先輩がうざい後輩の話
Monoids are identified with categories whose object classes are single-element sets.
Groups are identifies with categories whose object classes are single-element sets and all morphisms are isomorphisms. A groupoid is a small category in which morphisms are isomorphisms.
PyVISA controls your instruments using raw commands.
Keithley2600 controls your Keithley 2600 instruments with abstraction.
PyMeasure controls a wide range of instruments.
トニカクタダシイ
Quantum renormalization in real space applies only to single-particle systems.
On each step, the Hamiltonian undergoes a truncation \[H^S(M) = V^\dagger H(M\cdot M_S) V,\] where \(V\) contains the most significant \(M\) eigenstates of \[\rho^S (M\cdot M_S),\] given by the ground state of \[H(M\cdot M_S).\]
In the algorithm, we should keep track of the creation operators on the boundary sites.
Prerequisites: for SVD and QR Decomposition, see Mathematics Miscellany.
\(\Lambda_{a_{l-1}, a_l}\) | ![]() |
Diagonal Matrix |
\(A^{\sigma_1}_{1, a_1}{}\) | ![]() |
Row Matrix (MPS) |
\(A^{\sigma_L}_{a_{L-1}, 1}{}\) | ![]() |
Column Matrix (MPS) |
\(A^{\sigma_l}_{a_{l-1}, a_l}{}\) | ![]() |
Left or Right Normalized Matrix (MPS) |
\(A^{\sigma_l *}_{a_{l-1}, a_l}{} = A^{\sigma_l \dagger}_{a_{l}, a_{l-1}}{}\) | ![]() |
Conjugation |
\(\sum_{\sigma} A^{\sigma \dagger} A^\sigma = \mathbb{1}{}\) | ![]() |
Left Normalization |
\(\sum_{\sigma} B^{\sigma} B^{\sigma\dagger} = \mathbb{1}{}\) | ![]() |
Right Normalization |
\(\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} M^{\sigma_1} \cdots M^{\sigma_L} \ket{\sigma_1\cdots \sigma_L}{}\) | ![]() |
MPS String |
\(W^{\sigma_1 \sigma'_1}_{1,b_1}{}\) | ![]() |
Row Matrix (MPO) |
\(W^{\sigma_L \sigma'_L}_{b_{L-1},1}{}\) | ![]() |
Column Matrix (MPO) |
\(W^{\sigma_l \sigma'_l}_{b_{l-1}, b_l}{}\) | ![]() |
Matrix (MPO) |
\(\hat{O} = \sum_{\vb*{\sigma},\vb*{\sigma}'} W^{\sigma_1 \sigma'_1} \cdots W^{\sigma_L \sigma'_L} \ket{\vb*{\sigma}}\bra{\vb*{\sigma}'}\) | ![]() |
MPO String |
\(\hat O \ket{\psi} = \sum_{\vb*{\sigma}} N^{\sigma_1} \cdots N^{\sigma_L} \ket{\vb*{\sigma}}\) | ![]() |
MPO Acting on MPS |
\[\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} c_{\sigma_1,\cdots,\sigma_L} \ket{\sigma_1, \cdots, \sigma_L}.\]
\[\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} A^{\sigma_1} A^{\sigma_2} \cdots A^{\sigma_{L-1}} A^{\sigma_L} \ket{\sigma_1,\cdots,\sigma_L}\] where
\[ \begin{align*} c_{\sigma_1,\cdots,\sigma_L} &\xlongequal[\mathrm{reshape}]{} \Psi_{\sigma_1,(\sigma_2,\cdots,\sigma_L)} \\ &\xlongequal{\mathrm{SVD}} \sum_{a_1}^{r_1} U_{\sigma_1,a_1} S_{a_1,a_1} (V^\dagger)_{a_1,(\sigma_2,\cdots,\sigma_L)} \\ &\xlongequal[\mathrm{reshape}]{A^{\sigma_1}_{a_1} = U_{\sigma_1,a_1}} \sum_{a_1}^{r_1} A^{\sigma_1}_{a_1} \Psi_{(a_1\sigma_2),(\sigma_3,\cdots,\sigma_L)} \\ &\xlongequal{\mathrm{SVD}} \sum_{a_1}^{r_1} \sum_{a_2}^{r_2} A^{\sigma_1}_{a_1} U_{(a_1\sigma_2),a_2} S_{a_2,a_2} (V^\dagger)_{a_2,(\sigma_3,\cdots,\sigma_L)} \\ &\xlongequal[\mathrm{reshape}]{A^{\sigma_2}_{a_1,a_2} = U_{(a_1\sigma_2),a_2}} \sum_{a_1}^{r_1} \sum_{a_2}^{r_2} A^{\sigma_1}_{a_1} A^{\sigma_2}_{a_1,a_2} \Psi_{(\sigma_2 a_3),(\sigma_4,\cdots,\sigma_L)} \\ &= \cdots \\ &= \sum_{a_1,\cdots,a_{L-1}} A^{\sigma_1}_{a_1} A^{\sigma_2}_{a_1,a_2} \cdots A^{\sigma_{L-1}}_{a_{L-2},a_{L-1}} A^{\sigma_L}_{a_{L-1}} \end{align*} \]
\[ \begin{align*} \sum_{\sigma_1,\cdots,\sigma_L} \sum_{a_1,\cdots,a_L} M_{(\sigma_1,1),a_1} M^{\sigma_2}_{a_1,a_2} \cdots \ket{\sigma_1\cdots \sigma_L} &= \sum_{\sigma_1,\cdots,\sigma_L} \sum_{a_1,\cdots,a_L} \sum_{s_1} A_{(\sigma_1,1),s_1} S_{s_1,s_1} V^\dagger_{s_1,a_1} M^{\sigma_2}_{a_1,a_2} \cdots \ket{\sigma_1,\cdots,\sigma_L} \\ &= \sum_{\sigma_1,\cdots,\sigma_L} \sum_{a_2,\cdots,a_L} \sum_{s_1} A^{\sigma_1}_{1,s_1} \tilde{M}^{\sigma_2}_{s_1,a_2} M^{\sigma_3}_{a_2,a_3} \cdots \ket{\sigma_1,\cdots,\sigma_L} \\ &= \cdots. \end{align*} \]
\[\qty(\Lambda^{[0]} \Gamma^{\sigma_1})\qty(\Lambda^{[1]} \Gamma^{\sigma_2})\qty(\Lambda^{[2]} \Gamma^{\sigma_3})\cdots \rightarrow A^{\sigma_1} A^{\sigma_2} A^{\sigma_3} \cdots.\]
\[\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} B^{\sigma_1} B^{\sigma_2} \cdots B^{\sigma_{L-1}} B^{\sigma_L} \ket{\sigma_1,\cdots,\sigma_L}\] where
Similar to that of left-canonical ones.
Similar to that of left-canonical ones.
\[\qty(\Gamma^{\sigma_1}\Lambda^{[1]}) \qty(\Gamma^{\sigma_2}\Lambda^{[2]}) \qty(\Gamma^{\sigma_3}\Lambda^{[3]})\cdots \rightarrow B^{\sigma_1} B^{\sigma_2} B^{\sigma_3} \cdots.\]
\[\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} A^{\sigma_1} \cdots A^{\sigma_l} S B^{\sigma_{l+1}} \cdots B^{\sigma_L}.\]
\[ \begin{align*} c_{\sigma_1,\cdots,\sigma_L} &= \sum_{a_l} (A^{\sigma_1} \cdots A^{\sigma_l})_{a_l} S_{a_l,a_l} (V^\dagger)_{a_l,(\sigma_{l+1},\cdots,\sigma_L)} \\ &= \sum_{a_l} (A^{\sigma_1} \cdots A^{\sigma_l})_{a_l} S_{a_l,a_l} (B^{\sigma_{l+1}} \cdots B^{\sigma_L})_{a_l}. \end{align*} \]
\[\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} \Gamma^{\sigma_1} \Lambda^{[1]} \Gamma^{\sigma_2} \Lambda^{[2]} \cdots \Gamma^{\sigma_{L-1}} \Lambda^{[L-1]} \Gamma^{\sigma_L} \ket{\sigma_1,\cdots,\sigma_L},\] where
\[ \begin{align*} c_{\sigma_1,\cdots,\sigma_L} &\xlongequal[\mathrm{reshape}]{} \Psi_{\sigma_1,(\sigma_2,\cdots,\sigma_L)} \\ &\xlongequal{\mathrm{SVD}} \sum_{a_1} A^{\sigma_1}_{a_1} \Lambda^{[1]}_{a_1,a_1}(V^\dagger)_{a_1,(\sigma_2,\cdots,\sigma_L)} \\ &\xlongequal[\mathrm{reshape}]{A^{\sigma_1}_{a_1} = \Gamma^{\sigma_1}_{a_1}} \sum_{a_1} \Gamma^{\sigma_1}_{a_1} \Psi_{(a_1\sigma_2),(\sigma_3,\cdots,\sigma_L)} \\ &\xlongequal{\mathrm{SVD}} \sum_{a_1,a_2} \Gamma^{\sigma_1}_{a_1} A^{\sigma_2}_{a_1,a_2} \Lambda^{[2]}_{a_2,a_2} (V^\dagger)_{a_2,(\sigma_3,\cdots,\sigma_L)} \\ &\xlongequal[\color{orange} \mathrm{problematic\ division}]{A^{\sigma_2}_{a_1,a_2} = \Lambda^{[1]}_{a_1,a_1}\Gamma^{\sigma_2}_{a_1,a_2}} \sum_{a_1,a_2} \Gamma^{\sigma_1}_{a_1} \Lambda^{[1]}_{a_1,a_1} \Gamma^{\sigma_2}_{a_1,a_2} \Psi_{(a_2,\sigma_3),(\sigma_4,\cdots,\sigma_L)} \\ &= \cdots \\ &= \sum_{a_1,\cdots,a_L} \Gamma^{\sigma_1}_{a_1} \Lambda^{[1]}_{a_1,a_1} \Gamma^{\sigma_2}_{a_1,a_2} \Lambda^{[2]}_{a_2,a_2} \cdots \Lambda^{[L-1]}_{a_{l-1},a_{l-1}} \Gamma^{\sigma_L}_{a_{l-1},a_l}. \end{align*} \]
Similar to that of right-canonical ones.
\[ \begin{align*} B^{\sigma_1} B^{\sigma_2} B^{\sigma_3} \cdots &\xlongequal{\mathrm{SVD}} (A^{\sigma_1} \Lambda^{[1]} V^\dagger) B^{\sigma_2} B^{\sigma_3} \cdots \\ &\xlongequal{A^{\sigma_1} = \Lambda^{[0]}\Gamma^{\sigma_1}} \Gamma^{\sigma_1} M^{\sigma_2} B^{\sigma_3} \cdots \\ &\xlongequal{\mathrm{SVD}} \Gamma^{\sigma_1} (A^{\sigma_2} \Lambda^{[2]}V^\dagger) B^{\sigma_3} \cdots \\ &\xlongequal[\color{orange}\mathrm{problematic\ division}]{A^{\sigma_2} = \Lambda^{[1]}\Gamma^{\sigma_2}} \Gamma^{\sigma_1} \Lambda^{[1]}\Gamma^{\sigma_2} M^{\sigma_3} B^{\sigma_3} \cdots. \end{align*} \]
Section not done, cf. §4.5.2, Schollwöck (2011).
\[\hat O \ket{\psi} = \sum_{\vb*{\sigma}} N^{\sigma_1} \cdots N^{\sigma_L} \ket{\vb*{\sigma}}.\]
\[\hat{O} \ket{\psi} = \sum_{\vb*{\sigma}} N^{\sigma_1} \cdots N^{\sigma_L} \ket{\vb*{\sigma}}\] where \[N^{\sigma_i} = \sum_{\sigma'_i} W^{\sigma_i \sigma'_i} \otimes M^{\sigma'_i}.\]
kron
.The lesson:
\[\ket{\psi} = \sum_{\sigma_1,\cdots,\sigma_L} A^{\sigma_1} \cdots A^{\sigma_{l-1}} \Psi^{\sigma_l} B^{\sigma_{l+1}} \cdots B^{\sigma_L} \ket{\sigma_1 \cdots \sigma_L}.\]
\[\bra{a_{l-1} \sigma_l a_l} \hat{H} \ket{a'_{l-1}\sigma'_l a'_l} = \sum_{b_{l-1},b_l} L^{a_{l-1},a'_{l-1}}_{b_{l-1}} W^{\sigma_l \sigma'_l}_{b_{l-1},b_l} R^{a_l,a'_l}_{b_l}.\]
For tricks that speed up the computation, see Computational Tricks, DMRG (II).
Add a correction to \(\hat{\rho}^{A\bullet}\) before doing SVD: \[\hat{\rho}^{A\bullet} = \tr_B \ket{\psi} \bra{\psi} + \alpha \sum_{b_l} \tr_B \hat{H}^{A\bullet}_{b_l}\ket{\psi} \bra{\psi} \hat{H}^{A\bullet}_{b_l},\] where \(\alpha\) takes small value \(O(10^{-4})\) and will be taken slowly to zero as sweeping goes on.
The correction term \(\hat{H}_{b_l}^{A\bullet}\ket{\psi}\) is evaluated as follows.
\[M = USV^\dagger\] where
\[M = QR\] where
\[M = Q_1 R_1\] where
kron
of two matrices of orthonormal columns/rows is again a matrix of orthogonal columns/rows, respectively.numpy.kron(a, b)
scipy.sparse.kron(a, b)
scipy.linalg.kron(a, b)
Implementations
The Hamiltonian is given by the XXZ model \[ H = -\frac{1}{2} \sum_{j=1}^N (J \sigma_j^x \sigma_{j+1}^x + J \sigma_j^y \sigma_{j+1}^y + J_z \sigma_{j}^z \sigma_{j+1}^z). \]
\(d\) is defined to be the number of states of a single site.
In line 40 and 41 two matrices are defined, \[ S^z_{1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S^+_{1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \] as well as \[ H_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \] \(H_1\) will be used as the single-site Hamiltonian at initialization.
The two-site Hamiltonian is defined in line 45 to be \[ \begin{align*} H_2(S_1, S_2) &= \frac{J}{2} S^+_1 \otimes S^{-}_2 + \frac{J}{2} S^{-}_1 \otimes S^+_2 + J_z S^z_1 \otimes S^z_2 \\ &= J(S_1^x \otimes S_2^x + S_1^y \otimes S_2^y) + J_z S_1^z \otimes S_2^z. \end{align*} \]
The enlarging process renews the operaors as \[ \begin{align*} H &\rightarrow H \otimes \mathbb{1}_{d\times d} + H_2(S_{\mathrm{edge}}, S_1), \\ S_{\mathrm{edge}}^z &\rightarrow \mathbb{1}_{M\times M} \otimes S^z_1, \\ S_{\mathrm{edge}}^+ &\rightarrow \mathbb{1}_{M\times M} \otimes S^+_1. \end{align*} \]
At each DMRG step, the following steps are carried out:
We may take system and environment to be the same. This may reduce half of the calculations.
How is the projected density matrix calculated? Although \(\psi\) is a vector in the direct product of two Hilbert spaces, it was represented by a column vector returned from eigsh
. The following snippet traces out the environment part:
psi = psi.reshape([m_sys, -1])
rho = np.dot(psi0, psi0.conjugate.transpose())
This section is deprecated. It's a total failure.
With the above notation the dimension of \(R[N_\uparrow\otimes N_\downarrow]\) is at most \(M\).
By a block solution of \([0\otimes 0]_L\) where \(L\) may be \(0\) we mean
By a block solution of \([N_\uparrow \otimes 0]_L\) where \(N_\uparrow > 0\) we mean
For a block solution of \([0 \otimes N_\downarrow]_L\) where \(N_\downarrow > 0\) just substitute \(\downarrow\) for \(\uparrow\) in the above definition.
By a block solution of \([N_\uparrow \otimes N_\downarrow]_L\) where \(N_\uparrow > 0\) and \(N_\downarrow > 0\) we mean
Now we are gonna obtain the block solution of \((L+1,N_\uparrow,N_\downarrow)\) recursively. We assume that \(N_\uparrow > 0\) and \(N_\downarrow > 0\).
We assume that block solutions of length \(L\) are already known, as well as the block solutions of \((L+1, N^*_\uparrow, N^*_\downarrow)\) where \(N^*_\uparrow \le N_\uparrow\), \(N^*_\downarrow \le N_\downarrow\), and at least one of the inequalities strictly holds.
The creation operators on the boundary are given by
Now we have to find the creation operators next to the boundary.
We are now able to construct \(H\) in principle. Then, following the standard DMRG procedure, we obtain a projection matrix \(V\) consists of column vectors.
Section not done.
系統 (ㄒㄧˋ ㄊㄨㄥˇ) sounds really like a homophonic translation of system, while 系統 doesn't. That raises the question of whether the word 系統 was first invented by Japanese people or Chinese people.
The first of the definitions of 系統 given in 日本国語大辞典 reads
一定の順序を追って続いている、統一のある繋がり。特に、一族の血統。血筋。
The first quotation in Japanese dates back to 1827, the end of 江戸時代, given in 日本外史.
略敘王室相家之系統、以備参観云
The second definition of 系統 given in 辞海 reads
始终一贯的条理, 有条不紊的顺序.
The first quotation in Chinese dates back to the Jiajing period, given in 青霞集 by 沈鍊 (1497–1557).
岂可以仁义而无节制, 恩威而无系统者哉!
The word system is derived from Late Latin (from the 3rd to the 6th centuries CE).
It's really hard for me to draw a conclusion here. Note that there are multiple questions here:
It looks really strange that in both languages the phrase to give an example reads literally to raise an example. Is it accidental, or this definition is borrowed from one language to another?
Definition 4 and 4.5 of 挙げる given in 日本国語大辞典 reads respectively
人によく見えるようにする。広く知られるようにする。
⇒実例、証拠などをはっきり表面に表す。
Quotations date back to 1785, in
「わざと悪事に一味して、まっかう手めを上げようため」〈浄・先代萩〉
as well as to 1787–1788, in
「歴史上の事実を挙げ」〈花間鶯〉
This definition gives rise to the usage 例を挙げる.
There are also compounds like 挙例 or 挙隅.
Definition 5 of 舉 in 王力古漢語字典 reads
提出, 稱引.
Quotations found in 論語·述而 (the 5th century BC)
舉一隅不以三隅反, 則不復也
in 韓非子·外儲說左上 (mid 3rd century BC)
遠舉則病繆, 近世則病傭. (遠舉上世之事,則患繆妄)
as well as in 史記·屈原賈生列傳 (c. 90 BC)
舉類邇而見義遠.
The usage in the first quotation gives rise to 舉隅.
The definition to put forward seems to arise naturally from its original definition to physically raise something. However, the compounds 挙例 or 挙隅 may be imported from Chinese.
要约亦包括向不特定人之要约.
设定自动贩卖机即属向不特定多数人发出要约.
73年台上字2540號 ... 惟查廣告文字僅為要約之引誘.
合同法 第十四条 要约是希望和他人订立合同的意思表示,该意思表示应当符合下列规定:
(一)内容具体确定;
(二)表明经受要约人承诺,要约人即受该意思表示约束。
合同法 第十五条 要约邀请是希望他人向自己发出要约的意思表示。寄送的价目表、拍卖公告、招标公告、招股说明书、商业广告等为要约邀请。
商业广告的内容符合要约规定的,视为要约。
广告原则上属于要约引诱. 理由之一为避免给付障碍, 或发布人思虑不周而蒙受损害.
不知广告而完成一定行为之人是否得请求报酬? 无行为能力人如何?
BGB将「悬赏广告」置于§8.11, 与契约, 无因管理, 不当得利并列为债之发生事由.
BGB第657条 通过公开通告, 对完成某行为, 特别是对产生结果悬赏之人, 负有向完成此行为之人支付报酬的义务, 即使行为人完成该行为时未考虑到此悬赏广告.
悬赏广告是为自己设定义务的单方行为, 属于契约原则之例外.
台灣民法典第164條 以廣告聲明對完成一定行為之人給與報酬者,為懸賞廣告。廣告人對於完成該行為之人,負給付報酬之義務。
數人先後分別完成前項行為時,由最先完成該行為之人,取得報酬請求權;數人共同或同時分別完成行為時,由行為人共同取得報酬請求權。前項情形,廣告人善意給付報酬於最先通知之人時,其給付報酬之義務,即為消滅。
前三項規定,於不知有廣告而完成廣告所定行為之人,準用之。
單獨行為說 謂懸賞廣告乃單獨行為,廣告人因廣告之單獨意思表示負擔債務,惟其效力之發生,須俟指定行為完成,為廣告人負擔債務之停止條件。
契約說 謂懸賞廣告乃廣告人對於不特定人所為之要約,經行為人完成指定行為予以承諾而成立契約。
民國88年修訂第164條之立法理由 懸賞廣告之性質,有單獨行為與契約之不同立法例。為免理論爭議影響法律之適用,並使本法之體例與規定之內容一致,爰將第一項末段「對於不知有廣告...亦同」移列為第四項。並將「亦同」修正為「準用之」,以明示本法採取契約說。
学界在修法后仍对悬赏广告之定性存在争议.
民法第529条 ある行為をした者に一定の報酬を与える旨を広告した者(以下「懸賞広告者」という。)は、その行為をした者がその広告を知っていたかどうかにかかわらず、その者に対してその報酬を与える義務を負う。
平成29年改正前民法第529条 ある行為をした者に一定の報酬を与える旨を広告した者(以下この款において「懸賞広告者」という。)は、その行為をした者に対してその報酬を与える義務を負う。
See だから/従って/よって/故に.
Formality | ☆☆☆☆☆ |
Objectiveness | ☆☆☆☆☆ |
- 夕べはよく寝た。だから今日はとても調子がいい。
- ここは環境がいい。だから住みたいという人がとても多い。
Formality | ★★★★☆ |
Objectiveness | ★★★☆☆ |
- この学校は進学率が高い。したがって志望者も多い。
- このホテルはサービスがいい。したがって料金も高い。
Formality | ★★★★☆ |
Objectiveness | ★★★★★ |
- aはbに等しく、bはcに等しい。よってaとcは等しい。
- 貴殿はわが社の発展に多大な貢献をなされました。よってこれを賞します。
Formality | ★★★★★ |
Objectiveness | ★★★★★ |
- 日本は経済大国である。ゆえに外国から働きに来る人も多い。
- 我思う、ゆえに我あり。
See から、で、ので、ために的区别是什么。?.
Formality | ★☆☆☆☆ |
Objectiveness | ★★☆☆☆ |
- 操作ミスから事故が生じた。
- 危ないから、窓から手を出さないでください。
- あんまり安いから、つい買う気になった。
Formality | ★★★☆☆ |
Objectiveness | ★★★☆☆ |
- 辛い物を食べたので、のどが渇いた。
- 朝が早かったので、ついうとうとする。
- 盆地なので、夏は暑い。
Formality | ★★★★★ |
Objectiveness | ★★★★☆ |
- 雨のため、試合は中止になりました。
- 風が強かったために、昨日は船が出ませんでした。
See Japanese Buts: でも, しかし, ただ, ただし, ところが, が, けど, けれど, けれども, as well as 【だが】と【しかし】と【でも】の意味の違いと使い方の例文.
- 今朝は大雨だった。でも、学校は休みにならなかった。
- 君の言い分はよく解るよ。しかし、それを周囲に理解してもらおうというのは難しいと思うな。
- 今回は失敗をしてしまった。だが、次回は必ず成功すると確信している。
- これはすぐれた説だ。ただし疑えば疑える点もある。
See Japanese Buts: でも, しかし, ただ, ただし, ところが, が, けど, けれど, けれども, also 逆接用法:「が」「けど」「くせに」「のに」.
Mood | Disjunctive |
- みんな行ったが、彼は行かなかった。
- 営業も大変だが、事務はもっと大変です。
Mood | Unexpected |
See 【JLPT N4】文法・例文:〜のに.
- トムさんは2年日本へ留学したのに、全然日本語が話せません。
- 昨日、早くたくさん寝たのに、まだ眠いです。
Mood | Anyway |
- もう夜中だけど、もう少し勉強しよう。
- 食べたいけど、太るのが怖い。
Mood | Fuck him |
- 知っているくせに、知らないふりをしている。
- あいつは馬鹿のくせに、偉そうにしてる。
See Differences among -たら、なら、-んだったら、-えば, etc.
Certainty | ★★★★★ |
Objectiveness | ★★★★★ |
- 右へ曲がると、パンやがあります。
- 春になると、お花見ができます。
Certainty | ★★☆☆☆ |
Objectiveness | ★★☆☆☆ |
- 明日もし雨が降れば、どうしますか。
Certainty | ★★★★☆ |
Objectiveness | ★★★☆☆ |
たら is the 仮定形 of た.
- お家に帰ったら、連絡してください。
- パリに行ったら、凱旋門にも行ってみたい。
- 帰宅したら、必ずお風呂に入りなさい。
- 飲んだら乗るな。乗るなら飲むな。
Certainty | ★☆☆☆☆ |
Objectiveness | ★★☆☆☆ |
- スーパーに行くのなら、しょうゆを買ってきて。
- 旅行に行くのなら、カメラを持っていくといいですよ。
- 飲んだら乗るな。乗るなら飲むな。
Formality | ★★☆☆☆ |
Coherence | ★★★★★ |
- 地図の上方、詰まり北方は山岳地帯である。
Formality | ★★★★★ |
Coherence | ★★★★★ |
- 日本の首都、すなわち東京
See に限らず/によらず/を問わず.
Objectiveness | ★★☆☆☆ |
- 休日、平日を問わず、一年中人出が絶えない。
- 経験の有無を問わず、人材を広く世に求める。
Objectiveness | ★★★★☆ |
- 晴雨に関わらず実施する。
Objectiveness | ★★★★★ |
「によらず」は、「何」「だれ」などの不定称の代名詞を受けて、どの…に対しても区別をつけないで一様に、どんな…でもみな、という意味を表わす。
- 妹は何によらず臆病なところが心配です。
- だれによらず人の不始末の尻ぬぐいなどしたくはない。
- 千円だけ貸してあげる。
- 好きなだけ食べた。
- 勉強すればしただけ成績は上がる。
- あとは結果を待つのみである。
- 日本のみならず全世界の問題だ。
- 彼は勉強ばかりしている。
- 彼は子供とばかり遊んでいる。
- 心ばかりの贈り物。
- 彼女は肉に限らず動物性たんぱくはいっさいとらない。
- 目上の人と話す場合に限らず、人との付き合いには敬語は欠かせない。
See What is the difference between 出来る限り and 出来るだけ?.
- できるだけ多くの本を読みなさい。
- 私はできる限りあなたの援助をします。
To be filled.
See Five different verbs meaning “to close” with the same kanji (閉).
To physically close something.
- ドアを閉める。
- 店を閉める。
For something to physically close.
- ドアが閉まる。
- 店が閉まる。
For something to close or to come to an end.
- ドアが閉じる。
- 店が閉じる。
- 会が閉じる。
- 目を閉じる。
- 傘を閉じる。
- 歴史を閉じる。
To (figuratively) close.
- 道を閉ざす。
- 門を閉ざす。
- 国を閉ざす。
「歩く」は、足を使って前に進む意。具体的な動作を表わす。
「歩む」は、物事が進行する意。具体的な動作を表わすよりは、抽象的な意味で用いられるのが普通。
See 语言学中都有哪些定律?. Japanese is the epitome of a head final language.
See 意味借用.
See 《语词的漂移:近代以来中日之间的知识互动与共有》——陈力卫, as well as 如何看待《驳所谓〈离开了日本外来词,中国人无法说话〉的言论》?
「二次元のメインヒロインも好きだけど、でも、三次元の加藤恵が一番好きなんだよ」
Model | Dimension | Description |
---|---|---|
Thouless Charge Pump / Rice-Mele Model | 1D | Charge pump |
Fu-Kane Spin Pump | 1D | Spin pump |
Su-Schrieffer-Heeger Model | 1D | TI model for polyacetylene |
Haldane Model | 2D | IQHE in graphene |
Kane-Mele Model | 2D | QSHE in graphene |
Bernevig-Hughes-Zhang Model | 2D | QSHE in HgTe/CdTe quantum well |
\(\ce{Pb_{x}Sn_{1-x}Te}{}\) | 3D | Weak TI \(\ce{Pb_{x}Sn_{1-x}Te}{}\) |
\(\ce{Bi_{1-x}Sb_{x}}{}\) | 3D | Strong TI \(\ce{Bi_{1-x}Sb_{x}}{}\) |
\(\ce{Bi_{2}Q_{3}}{}\) | 3D | Strong TI \(\ce{Bi_{2}Q_{3}}{}\) with a single Dirac cone |
For the \((p,V)\) pair we find \[ Y = -p = -\frac{N}{\beta} \pdv{}{V}\ln Z_1 = \frac{N}{\beta}\pdv{}{V} f_1. \]
This is spam. I am not gonna remove it because 1) this is a problem that many bloggers may encounter; 2) this funny spammer seems to forget to attach his link. See this quora question for why such comments occur.
SC | FCC | BCC |
---|---|---|
![]() |
![]() |
![]() |
\[\begin{align*}\Delta&: \Gamma \rightarrow X \\ \Sigma&: \Gamma \rightarrow M\\ \Lambda&: \Gamma \rightarrow R\end{align*}{}\] | \[\begin{align*}\Delta&: \Gamma \rightarrow X \\ \Sigma&: \Gamma \rightarrow K\\ \Lambda&: \Gamma \rightarrow L\end{align*}{}\] | \[\begin{align*}\Delta&: \Gamma \rightarrow H \\ \Sigma&: \Gamma \rightarrow N\\ \Lambda&: \Gamma \rightarrow P\end{align*}{}\] |
\(S: X \rightarrow R\) | ||
#221 | #225 | #229 |
\(\mathrm{O}_h\) | \(E\) | \(3C_4^2\) | \(6C_4\) | \(6C'_2\) | \(8C_3\) | \(i\) | \(3iC_4^2\) | \(6iC_4\) | \(6iC'_2\) | \(8iC_3\) |
---|---|---|---|---|---|---|---|---|---|---|
\(\Gamma_{25}^+\) | \(3\) | \(-1\) | \(-1\) | \(1\) | \(0\) | \(3\) | \(-1\) | \(-1\) | \(1\) | \(0\) |
The rest \(9\) IRs not listed. |
\(\mathrm{O}_h\) | \(E\) | \(2C_{4\perp}^2\) | \(C_{4\parallel}^2\) | \(2C_{4\parallel}{}\) | \(2C_2\) | \(i\) | \(2iC_{4\perp}^2\) | \(iC_{4\parallel}^2\) | \(2iC_{4\parallel}{}\) | \(2iC_2\) |
---|---|---|---|---|---|---|---|---|---|---|
\(X_1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(X_3\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
\(X_5\) | \(2\) | \(0\) | \(-2\) | \(0\) | \(0\) | \(2\) | \(0\) | \(-2\) | \(0\) | \(0\) |
The rest \(7\) IRs not listed. |
\(\mathrm{C}_{4v}{}\) | \(E\) | \(C_4^2\) | \(2C_4\) | \(2iC_4^2\) | \(2iC'_2\) |
---|---|---|---|---|---|
\(\Delta_1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\Delta_2\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) |
\(\Delta'_2\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) |
\(\Delta'_1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(\Delta_5\) | \(2\) | \(-2\) | \(0\) | \(0\) | \(0\) |
\(\mathrm{C}_{2v}{}\) | \(E\) | \(C_2\) | \(iC_4^2\) | \(iC_2\) |
---|---|---|---|---|
\(\Sigma_1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\Sigma_2\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(\Sigma_3\) | \(1\) | \(-1\) | \(-1\) | \(1\) |
\(\Sigma_4\) | \(1\) | \(-1\) | \(1\) | \(-1\) |
\(\mathrm{C}_{3v}{}\) | \(E\) | \(2C_3\) | \(3iC_2\) |
---|---|---|---|
\(\Lambda_1\) | \(1\) | \(1\) | \(1\) |
\(\Lambda_2\) | \(1\) | \(1\) | \(-1\) |
\(\Lambda_3\) | \(2\) | \(-1\) | \(0\) |
It seems better to take \(\vb*{k}\) as an external parameter like \(\vb*{E}\) in the Stark effect. Therefore, the band structure is just the energy levels as we enumerate through all \(\vb*{k}\)'s.
SU(3)は君の嘘
- \[ A(1) = \set{\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}}. \]
- Lie algebras (left-invariant vector fields): \[ X = x\pdv{}{x},\quad Y = x\pdv{}{y}. \]
- Dual: \[ \sigma = \frac{\dd{x}\wedge \dd{y}}{x^2}. \]
The following code demonstrates why the fundamental group of a torus is abelian.
torus[t_, p_] := {2*Cos[t] + Cos[t]*Cos[p], 2*Sin[t] + Sin[t]*Cos[p],
Sin[p]};
torusStroke[t_, p_] := {2*Cos[t] + 1.01 Cos[t]*Cos[p],
2*Sin[t] + 1.01 Sin[t]*Cos[p], 1.01 Sin[p]};
Manipulate[
Show[ParametricPlot3D[
torus[2 \[Pi] t, 2 \[Pi] p], {t, 0, 1}, {p, 0, 1}],
ParametricPlot3D[
torusStroke[2 \[Pi] (t - 0.125),
2 \[Pi] (Piecewise[{{u/(1 - u) t,
t < 1 - u}, {(1 - u)/u (t - 1) + 1, t > 1 - u}}])], {t, 0,
1}, PlotStyle -> {Thickness -> 0.01}, PlotPoints -> 200,
ColorFunction -> (Hue[
Piecewise[{{#4/(1 - u)*0.5, #4 <
1 - u}, {0.5 + (#4 - (1 - u))/u*0.5, #4 >
1 - u}}]] &)]], {u, 0.01, 0.99}]
- \(x^\mu \in \mathbb{R}^m\). \(E\) and \(F\) be real line bundles over \(\mathbb{R}^m\).
- Laplacian: \[ \bigtriangleup = \pdv{^2}{(x^1)^2} + \cdots + \pdv{^2}{(x^m)^2}. \]
- Symbol: \[ \sigma(\Delta,\xi) = \sum_\mu (\xi_\mu)^2. \]
- The d'Alembertian is not invertible.
- De Rham complex \(\Omega(M)\) given by \[ 0 \xrightarrow{i} \Omega^0(M) \xrightarrow{\dd{}} \Omega^1(M) \xrightarrow{\dd{}} \cdots \xrightarrow{\dd{}} \Omega^m(M) \xrightarrow{\dd{}} 0. \]
- Index identified with Euler characteristic: \[ \begin{align*} \mathrm{ind}(\Omega^*(M), \dd{}) &= \sum_{r=0}^m (-1)^r \dim H^r(M;\mathbb{R}) \\ &= \chi(M) = \int_M e(TM) \\ &= \sum_{r=0}^m (-1)^r \dim \ker \bigtriangleup_r. \end{align*}{} \]
![]() |
Index | |
Index |
ねぇ、あなたは何色になりたい?
For the quaternion group \[ Q_8 = \langle \overline{e},i,j,k \vert \overline{e}^2 = e, i^2=j^2=k^2=ijk=\overline{e} \rangle \] that consists of eight elements \[ \qty{e,i,j,k,\overline{e},\overline{i},\overline{j},\overline{k}}, \] the representation given by \[ \rho(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},\quad \rho(j) = w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] is quternionic since \[ w\rho(g) w^{-1} = \overline{\rho}(g) \] for all \(g\) but \(\rho\) could not be sent to a real representation in that way.
Let \(H\) be a subgroup of \(G\) and \(\rho: H \rightarrow \mathrm{GL}(V)\) be a representation of \(H\). The induced representation \(\mathrm{Ind}^G_H(\pi)\) acts on \[ W = \bigoplus_{i=1}^n g_i V, \] where \(g_i \in G\) are representative elements of the quotient \(G/H\), by \[ g\cdot g_i v_i = g_{j(i)} h_i v_i. \] The induced representation is denoted \[ \color{orange} \rho_G = \rho\uparrow G. \]
Let \[ G = D_{12} = \bra{\rho,\sigma}\ket{\rho^6 = \sigma^2 = 1, \rho\sigma = \sigma \rho^{-1}}, \] and \[ H = \qty{1,\sigma,\rho^3, \sigma\rho^3}. \] A representation of \(H\) is given by \[ \rho(\sigma) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \rho(\rho^3) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \rho(\sigma\rho^3) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}. \] Note that \([G:H] = 3\) and therefore the induced representation consists of \(3\times 3\) matrices of \(2\times 2\) blocks. \[ \rho_G(\rho) = \begin{pmatrix} 0 & 0 & \rho(\rho^3) \\ \mathbb{1} & 0 & 0 \\ 0 & \mathbb{1} & 0 \end{pmatrix},\quad \rho_G(\sigma) = \begin{pmatrix} \rho(\sigma) & 0 & 0 \\ 0 & 0 & \rho(\sigma\rho^3) \\ 0 & \rho(\sigma\rho^3) & 0 \end{pmatrix}. \] We pick representative elements \[ g_1 = e,\quad g_2 = \rho,\quad g_3 = \rho^2. \] Let's figure out how \(g\in G\) acts on \(\bigoplus g_i V_i\), i.e. \[ g g_i v_i = g_? h_? v_i. \] That is to seek a \(g_?\) such that \[ g_?^{-1} g_i v_i = h_? \in H. \] We take \(g = \rho\) for example, and find that \begin{align*} g_2^{-1} g g_1 &= 1 \in H, \\ g_3^{-1} g g_2 &= 1 \in H, \\ g_1^{-1} g g_3 &= \rho^3 \in H. \end{align*} Therefore, we are now ready to answer the following questions:
- How does \(g = \rho\) act on \(g_1 V_1\)?
- \[g_1\cdot v_1 \rightarrow g_2\cdot \mathbb{1} v_1.\]
- How does \(g = \rho\) act on \(g_2 V_2\)?
- \[g_2 \cdot v_2 \rightarrow g_3\cdot \mathbb{1} v_2.\]
- How does \(g = \rho\) act on \(g_3 V_3\)?
- \[g_3 \cdot v_3 \rightarrow g_1\cdot \rho(\rho^3) v_3.\]
Now we obtain the \(\rho_G\) above.
Band Representations and Topological Quantum Chemistry
This could be written as \[ [\rho_G(g)]_{\alpha i,\beta j} = [\tilde{\rho}(g_\alpha^{-1} g g_\beta)]_{ij}, \] where \[ [\tilde{\rho}(g)]_{ij} = \begin{cases} [\rho(g)]_{ij}, & \text{if } g\in H, \\ 0, & \text{else}. \end{cases} \]
States of different \(l\) (living in different spaces of the IRs of \(\mathrm{SO}(3)\)) doesn't overlap.
The IRs of one-dimensional discrete translation group are given by \(\qty{e^{ikna}}\). From a local (Wannier) state \(\phi\) we generate a one-dimensional invariant (Bloch) basis \[ \ket{\psi_k} = \sum_n T_n\ket{\phi} e^{ikna}. \]
1 | 2 | 3 |
4 |
1 | 2 |
3 | 4 |
Let \(\Theta_2\) be given as follows.
1 2 3 The irreducible symmetrizer is given by \[ e_2 = \frac{[e+(12)][e-(31)]}{4}. \] Let \[ r_2 = (23) e_2. \] Then \(\qty{e_2,r_2}\) span an invariant subspace of the group ring, giving rise to the two-dimensional IR of \(S_3\).
\(\qty{i}\) denotes a collection of indices. We work on the space \(V^n_m\), i.e. \(n\) copies of a \(m\)-dimensional space \(V\).
Direct product of operator acting on direct product of spaces: \[ g\ket{\qty{i}} = \ket{\qty{j}} D(g)^{\qty{j}}{_{\qty{i}}}. \]
Action of permutation: \[ p\ket{\qty{i}} = \ket{p^{-1}\qty{i}}. \]
The two set of matrices \(\qty{D(p)}\) of where \(p\in S_n\) and \(\qty{D(g)}\) where \(g\in \mathrm{GL}(m)\) commute with each other.
Tensors of symmetry class \(\lambda\): \[ T_\lambda(\alpha) = \set{re_\lambda \ket{\alpha} | r\in \mathbb{C}S_n}, \]
Tensors of symmetry \(\Theta^p_\lambda\): \[ \set{e^p_\lambda\ket{\alpha}}. \]
Two tensor subspaces irreducibly invariant with respect to \(S_n\) and belonging to the same symmetry class either overlap completely or are disjoint.
Two irreducible invariant tensor subspaces corresponding to two distinct symmetry classes are necessarily disjoint.
If \(g\in \mathrm{GL}_m\) and \(\qty{\ket{\lambda,\alpha,a}}\) is a set of basis tensors, then the subspaces \(T'\lambda(a)\) spanned by \(\qty{\ket{\lambda,\alpha,a}}\) with fixed \(\lambda\) and \(a\) are invariant under \(\mathrm{GL}_m\). The representations of \(\mathrm{GL}_m\) on \(T'_\lambda(a)\) are independent of \(a\). \[ g\ket{\lambda,\alpha,a} = \ket{\lambda,\beta,a} D_\lambda(g){^\beta}{_\alpha}. \]
The representations of \(\mathrm{GL}_m\) on the subspace \(T'_\lambda(a)\) of \(V^n_m\) are irreducible.
Let \(\Theta_{\lambda=s}\) be the Young tableau associated with the total symmetrizer, then \(T_\lambda(\alpha)\) is a totally symmetric tensor, \(S_n\) acts on which irreducibly (and trivially).
There is one and only one independent totally anti-symmetric tensor of rank \(n\) in \(n\)-dimensional space.
For second-rank tensors on \(m\)-dimensional \(V\), we have \[ e_s\ket{ij} = \frac{\ket{ij} + \ket{ji}}{2}, \] while \[ e_a\ket{ij} = \frac{\ket{ij} - \ket{ji}}{2}. \]
Let \(\Theta_m\) be given as follows.
1 2 3 The irreducible symmetrizer is given by \[ e_m = \frac{[e+(12)][e-(31)]}{4}. \] With \[ \begin{align*} \ket{\alpha} &= \ket{++-}, \\ \ket{\beta} &= \ket{--+}. \end{align*} \] we obtain \[ \begin{align*} e_m\ket{\alpha} = \ket{m,\alpha,1} &= \frac{2\ket{++-} - \ket{-++} - \ket{+-+}}{4}, \\ (23) e_m\ket{\alpha} = \ket{m,\alpha,2} &= \frac{2\ket{+-+} - \ket{-++} - \ket{++-}}{4}; \\ e_m\ket{\beta} = \ket{m,\beta,1} &= \frac{2\ket{--+} - \ket{+--} - \ket{-+-}}{4}, \\ (23) e_m\ket{\beta} = \ket{m,\beta,2} &= \frac{2\ket{-+-} - \ket{+--} - \ket{--+}}{4}. \end{align*}{} \] The action of \(S_3\) on the subspace generated by these two vectors gives rise to its two-dimensional representation.
An Example of Symmetry Group Acting on Wavefunctions
An Example of Compatibility Relations
\(T_d\) | \(E\) | \(8C_3\) | \(3C'_2\) | \(6S_4\) | \(6\sigma_{\mathrm{d}}\) |
---|---|---|---|---|---|
\(A_1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(A_2\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(E\) | \(2\) | \(-1\) | \(2\) | \(0\) | \(0\) |
\(T_2\) | \(3\) | \(0\) | \(-1\) | \(1\) | \(-1\) |
\(T_1\) | \(3\) | \(0\) | \(-1\) | \(-1\) | \(1\) |
\(\mathrm{O}(3)\) | \(E\) | \(8C_3\) | \(3C'_2\) | \(6S_4\) | \(6\sigma_{\mathrm{d}}\) |
---|---|---|---|---|---|
\(D_2^+\) | \(5\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
![]() |
Index | |
Index |
ゲージのばの庭
Let \[ E \xrightarrow{\pi} S^1, \] and the typical fibre \[ F = [-1,1]. \] Let \[ U_1 = (0,2\pi), \quad B = (-\pi,\pi), \] and \(A = (0,\pi)\) and \(B = (\pi,2\pi)\) be the intersection of \(U_1\cap U_2\).
- Local trivialization:
- On \(A\): \[ \phi_1^{-1}(u) = (\theta, t),\quad \phi_2^{-1}(u) = (\theta, t). \]
- Transition function: \[ t_{12}(\theta) = \mathrm{id}. \]
- On \(B\): two choices,
- \[ \phi_1^{-1}(u) = (\theta,t),\quad \phi_2^{-1}(u) = (\theta,t), \]
- Transition function: \[t_{12}(\theta) = \mathrm{id}.\]
- \(G=\qty{e}\), cylinder, trivial bundle \(S^1\times F\).
- \[ \phi_1^{-1}(u) = (\theta,t),\quad \phi_2^{-1}(u) = (\theta,-t). \]
- Transition function: \[t_{12}(\theta): t\mapsto -t.\]
- \(G = \mathbb{Z}_2\), Möbius strip.
For given \(M\), \(\qty{U_i}\), \(t_{ij}(p)\), \(F\) and \(G\), we can reconstruct the fibre bundle \((E,\pi,M,F,G)\).
Let \(M\) and \(N\) be differentiable manifolds with \[\dim M = \dim N = m.\] Let \(f: N\rightarrow M\) be a smooth map. \(f\) induces \(\pi_2\) such the the diagram \[ \begin{CD} TN @>\pi_2>> TM \\ @VV\pi_1V @VV\pi V\\ N @>f>> M. \end{CD} \] If \(TN\) is a pullback bundle \(f^*(TM)\), then \(\pi_2\) maps \(T_p N\) to \(T_{f(p)}M\) diffeomorphically.
Let \(U_{\mathrm{N}}\) be \(S^2\) without south pole and \(U_{\mathrm{S}}\) be \(S^2\) without north pole. Let \((X,Y)\) and \((U,V)\) be the respective stereographic coordinates. Putting \(X = r\cos\theta\) and \(Y = r\sin\theta\) we obtain the transition \[ t_{\mathrm{SN}} = \pdv{(U,V)}{(X,Y)} = \frac{1}{r^2} \begin{pmatrix} -\cos 2\theta & -\sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}. \]
- Let \(M\) be an \(m\)-dimensional manifold embedded in \(\mathbb{R}^{m+k}\).
- Let \(N_p M\) be the vector space normal to \(T_p M\) in \(\mathbb{R}^{m+k}\).
- Normal bundle: \[ NM = \bigcup_{p\in M} N_p M. \]
- Fibre in \(\mathbb{R}^k\).
For example, the normal bundle of \(S^2\) embedded in \(\mathbb{R}^3\) is a trivial bundle \(S^2 \times \mathbb{R}\).
A wavefunction is a section of the trivial complex line bundle \(L = \mathbb{R}^3 \times \mathbb{C}\).
Let \(L\) be the canonical line bundle \(L\) over \(\mathbb{C}P^n\). Let The local section \(s_\mu\) over \(U_\mu\) is defined by \[ s_\mu = \qty{\xi{^0}{_{(\mu)}}, \cdots, 1, \cdots, \xi{^n}{_{(\mu)}}} \in \mathbb{C}^{n+1}. \] The transition is given by \[ s_\nu = \frac{z^\mu}{z^\nu} s_\mu. \] The dual section is defined by \[ s^*_\mu(s_\mu) = 1. \] The transition is given by \[ s^*_\nu = \frac{z^\nu}{z^\mu} s_\mu^*. \] A fibre metric \(h_{\mu\nu}(p)\) is defined by \[ (s,s')_p = h_{\mu\nu}(p) \overline{s^\mu(p)} s'^\nu(p). \]
Let \(E = TS^2\) and \(E' = NS^2\) defined in \(\mathbb{R}^3\). The trivialization \(\Phi_{i,j}\) is given by \[ \Phi^{-1}_{i,j}(u,v) = (p,q; V,W) = (p; V, W), \] where \[ \phi_i^{-1} = (p,V),\quad \psi_i^{-1} = (q,W). \] The Whitney sum \[ TS^2 \oplus NS^2 \] is therefore a trivial bundle \(S^2 \times \mathbb{R}^3\).
Let \(P\) be a principal bundle with fibre \(\mathrm{U}(1) = S^1\) and base space \(S^2\). Let \[ \begin{align*} U_{\mathrm{N}} &= \set{(\theta,\phi)| 0 \le \theta \le \pi/2+\epsilon}, \\ U_{\mathrm{S}} &= \set{(\theta,\phi)| \pi/2-\epsilon \le \theta\le \pi}. \end{align*}{} \] \(U_{\mathrm{N}} \cap U_{\mathrm{S}}\) is the equator. Let \(\phi_{\mathrm{N}}\) and \(\phi_{\mathrm{S}}\) be the local trivializations such that \[ \phi_{\mathrm{N}}^{-1}(u) = (p, e^{i\alpha_{\mathrm{N}}}),\quad \phi_{\mathrm{S}}^{-1}(u) = (p, e^{i\alpha_{\mathrm{S}}}). \] Fibre coordinates related on the equator as \[ e^{i\alpha_{\mathrm{N}}} = e^{in\phi} e^{i\alpha_{\mathrm{S}}}, \] characterized by \(\pi_1(\mathrm{U}(1)) = \mathbb{Z}\). Trivial bundle for \(n=0\), and twisted otherwise. Right action \(g = e^{i\Lambda}\) is a \(\mathrm{U}(1)\)-gauge transformation.
With \[S^4 = \mathbb{R}^4 \cup \qty{\infty},\] and the open covering \[ \begin{align*} U_{\mathrm{N}} &= \set{(x,y,z,t) | x^2 + y^2 + z^2 + t^2 \le R^2 + \epsilon}, \\ U_{\mathrm{S}} &= \set{(x,y,z,t) | x^2 + y^2 + z^2 + t^2 \ge R^2 - \epsilon}. \end{align*}{} \] We have \[U_{\mathrm{N}}\cap U_{\mathrm{S}} \cong S^3.\] For an \(\mathrm{SU}(2)\) bundle \(P\) over \(S^4\), the transition function \[t_{\mathrm{NS}}: S^3 \rightarrow \mathrm{SU}(2)\] is characterized by \(\pi_3(\mathrm{SU}(2)) = \mathbb{Z}\). The integer is called the instanton number. Nontrivial bundles are given by \[ t_{\mathrm{NS}}(p) = \frac{1}{\sqrt{x^2+y^2+z^2+t^2}^n}\qty(t\mathbb{1} + i\sum_i x^i \sigma_i)^n. \]
\(S^3\) as a \(\mathrm{U}(1)\) bundle over \(S^2\).
- Hopf map \(\pi:S^3\rightarrow S^2\) \[ \begin{align*} \xi^1 &= 2(x^1 x^3 + x^2 x^4), \\ \xi^2 &= 2(x^2 x^3 - x^1 x^4), \\ \xi^3 &= (x^1)^2 + (x^2)^2 - (x^3)^2 - (x^4)^2. \end{align*}{} \]
- Denote \[ \begin{align*} z^0 &= x^0 + ix^1, \\ z^1 &= x^2 + ix^3. \end{align*}{} \]
- Stereographic projection of \(S^2\) given by \[ Z = \frac{z^0}{z^1},\quad W = \frac{z^1}{z^0}, \] are both invariant under \(\mathrm{U}(1)\) transformation \[ (z^0,z^1) \mapsto (\lambda z^0, \lambda z^1). \]
- Local trivializations: \[ \phi_{\mathrm{S}}^{-1}: \pi^{-1}(U_{\mathrm{S}}) \rightarrow U_{\mathrm{S}} \times \mathrm{U}(1) \] by \[ (z^0,z^1) \mapsto (\frac{z^0}{z^1}, \frac{z^1}{\abs{z^1}}), \] and \[ \phi_{\mathrm{N}}^{-1}: \pi^{-1}(U_{\mathrm{N}}) \rightarrow U_{\mathrm{N}} \times \mathrm{U}(1) \] by \[ (z^0,z^1) \mapsto (\frac{z^1}{z^0}, \frac{z^0}{\abs{z^0}}). \]
- On the equator \[ t_{\mathrm{NS}}(\xi) = \xi^1 + i\xi^2 \in \mathrm{U}(1). \]
- \(t_{\mathrm{NS}}(\xi)\) traverses the unit circle once as we circumnavigate the equator. The \(\mathrm{U}(1)\) bundle \[ S^3 \xrightarrow{\pi} S^2 \] is therefore characterized by the homotopy class \(1\) of \[ \pi_1(\mathrm{U}(1)) = \mathbb{Z}. \]
- This Hopf map describes a magnetic monopole of unit strength.
- Unit quaternion represents \(S^3\).
- Let \[ S^1_{\mathbb{H}} = \set{(q^0,q^1)\in \mathbb{H}^2 | \abs{q^0}^2 + \abs{q^1}^2 = 1}, \] which represents \(S^7\).
- Let \[ \mathbb{H}P^1 = \qty{\eta(q^0,q^1)\in \mathbb{H}^2 | \eta \in \mathbb{H} - \qty{0}}, \] which represents \(S^4\).
- We have the Hopf map \(\pi: S^7 \rightarrow S^4\). The transition function is defined by the class \(1\) of \[ \pi_3(\mathrm{SU}(2)) \cong \mathbb{Z}. \]
- This Hopf map describes a instanton of unit strength.
- Let \(H\) be a closed Lie subgroup of a Lie group \(G\). Then \(G\) is a principal bundle with fibre \(H\) and base space \(M = G/H\).
- Local trivializations defined by \[ \phi_i^{-1}(g) = ([g], f_i(g)). \]
- \[f_i(g) = s([g])^{-1}g.\]
- \(s\) is a section over \(U_i\).
- Examples: \[ \begin{align*} \mathrm{O}(n) / \mathrm{O}(n-1) &= \mathrm{SO}(n) / \mathrm{SO} (n-1) = S^{n-1}, \\ \mathrm{U}(n) / \mathrm{U}(n-1) &= \mathrm{SU}(n) / \mathrm{SU}(n-1) = S^{2n-1}. \end{align*}{} \]
Frame bundle \[ LM = \bigcup_{p\in M} L_p M, \] where \(L_p M\) is the set of frames at \(p\). A frame \[ u = \qty{X_1,\cdots,X_m} \] is expressed as \[ X_\alpha = X{^\mu}{_\alpha} \partial_\mu. \] The local trivialization may be given by \[ \phi_i^{-1}(u) = (p, (X{^\mu}{_\alpha})) \in U_i \times \mathrm{GL}(m, \mathbb{R}). \]
- Action of \(\mathrm{GL}(m,\mathbb{R})\) given by \[ Y_\beta = X_\alpha a{^\alpha}{_\beta}. \]
- Transition function given by \[ {X}{^\mu}{_\alpha} = \pdv{x^\mu}{y^\nu} \tilde{X}{^\nu}{_\alpha}. \]
The universal covering group of \(\mathrm{O}^+_{\uparrow}(3,1)\) is \(\mathrm{SL}(2,\mathbb{C})\). The kernel of the homomorphism \[ \varphi: \mathrm{SL}(2,\mathbb{C}) \rightarrow \mathrm{O}^+_{\uparrow}(3,1) \] is \(\qty{I_2,-I_2}\).
- Weyl spinor: a section of \[ (W,\pi,M,\mathbb{C}^2,\mathrm{SL}(2,\mathbb{C})). \]
- Dirac spinor: a section of \[ (D,\pi,M,\mathbb{C}^4,\mathrm{SL}(2,\mathbb{C})\oplus \overline{\mathrm{SL}(2,\mathbb{C})}). \]
(image from Supplementary chapters for "Geometric Control of Mechanical Systems")
For a \(\mathrm{U}(1)\)-bumdle, we define a new trivialization by \[ t_{ij}(p) = \exp[i\Lambda(p)]. \] The potentials are therefore related as \[ \mathcal{A}_j(p) = \mathcal{A}_i(p) + i\partial_\mu \Lambda. \] The connection \(\mathcal{A}_\mu\) differs from the standard vector potential by the Lie algebra factor, i.e. \[ \mathcal{A}_\mu = iA_\mu. \]
- \(P(M,\mathbb{R}) \cong M\times \mathbb{R}\) where \(M = \mathbb{R}^2 - \qty{0}\).
- The local trivialization be given by \[ \phi: ((x,y),f) \mapsto u. \]
- \[ \omega = \frac{y\dd{x} - x\dd{y}}{x^2 + y^2} + \dd{f}. \]
- \[ \gamma: t\in [0,1] \rightarrow (\cos 2\pi t, \sin 2\pi t)\in M. \]
- \[ X = \dv{}{t} = \dv{x}{t} \pdv{}{x} + \dd{y}{t} \pdv{}{y} + \dv{f}{t} \dd{}{f}. \]
- \[ 0 = \omega(X) = \dv{x}{t}\frac{y}{r^2} - \dv{y}{t}\frac{x}{r^2} + \dv{f}{t} = -2\pi + \dv{f}{t}. \]
- Horizontal lift \[ \tilde{\gamma}(t) = ((\cos 2\pi t, \sin 2\pi t), 2\pi t). \]
In the previous example, \[ \tau_\gamma(g) = g + 2\pi. \]
- \(FM\) be frame bundles over \(M\).
- \[FM = P(M,\mathrm{GL}(m,\mathbb{R})).\]
- \(TM\) be its associated bundle.
- \[TM = FM \times_\rho \mathbb{R}^m.\]
- \(m = \dim M\).
- \[\mathcal{A}_i = \Gamma{^\alpha}_{\mu\beta} \dd{x^\mu}.\]
- \[ \grad_{\partial/\partial x^\mu} e_\alpha = [(\sigma_i(0), \Gamma_\mu e{_\alpha}{^0})] = \Gamma{^\beta}_{\mu\alpha} e_\beta. \]
- \[ \grad_{\partial/\partial x^\mu} s = \qty(\frac{\partial}{\partial x^\mu} X{_i}{^\alpha} + \Gamma{^\alpha}_{\mu\beta} X^\beta) e_\alpha. \]
- \(\mu\) is the \(\Omega^1(M)\) index while \(\alpha\) and \(\beta\) are \(\frak{gl}(m,\mathbb{R})\) indices.
- \(P(M,\mathrm{U}(1))\).
- \(E = P\times_\rho \mathbb{C}\).
- \(\sigma_i\) be a local section. \(\tilde{\gamma}\) be a horizontal lift defined by \[ \tilde{\gamma}(t) = \sigma_i(t) e^{i\varphi(t)}. \]
- Basis section \[ e = [(\sigma_i(p), 1)]. \]
- My field (section) \[ \phi(p) = [(\sigma_i(p), \Phi(p))] = \Phi(p)e = \Phi(t)[(\tilde{\gamma}(t), e^{-i\varphi(t)})]. \]
- Covariant derivative \[ \grad_X \phi = X^\mu \qty(\pdv{\Phi}{x^\mu} + \mathcal{A}_{i\mu} \Phi)e. \]
- \(P(M,\mathrm{SU}(2))\).
- \(E = P \times_\rho \mathbb{C}^2\).
- Gauge potential
- \[ \mathcal{A}_i = \mathcal{A}_{i\mu} \dd{x^\mu} = A_{i\mu}{^\alpha}\qty(\frac{\sigma_\alpha}{2i})\dd{x^\mu}. \]
- \(e{_\alpha}{^0}\) where \(\alpha=1,2\) be basis vectors of \(\mathbb{C}^2\).
- Basis section \[ e_\alpha(p) = [(\sigma_i(p), e{_\alpha}{^0})]. \]
- My field (section) \[ \phi(t) = [(\tilde{\gamma}(t), U(t)^{-1} \Phi^\alpha(t) e{_\alpha}{^0})]. \]
- \[\tilde{\gamma}(t) = \sigma_i(p) U(t),\quad U(t) \in \mathrm{SU}(2).\]
- Covariant derivative \[ \grad_X \phi = X^\mu \qty(\pdv{\Phi^\alpha}{x^\mu} + \mathcal{A}_{i\mu}{^\alpha}{_\beta}) e_\alpha. \]
The holomorphic tangent bundle \(TM^+\) is a holomorphic vector bundle. The typical fibre is \(\mathbb{C}^m\) and the local basis is \(\qty{\partial/\partial z^\mu}\).
- Electron in a magnetic field: \[ H(\vb*{B}) = \vb*{B}\cdot \vb*{\sigma}. \]
- Stick with the positive energy state \(\ket{\vb*{R}}_{\mathrm{N}}\).
- \[ \mathcal{A}_{\mathrm{N}} = {_\mathrm{N}}\bra{\vb*{R}} \dd{\ket{\vb*{R}}_\mathrm{N}}. \]
- Field strength \[ \mathcal{F} = \dd{\mathcal{A}} = \frac{i}{2} \frac{R_1 \dd{R_2} \wedge R_3 + R_2 \dd{R_3} \wedge \dd{R_1} + R_1 \dd{R_1}\wedge \dd{R_2}}{R^3}. \]
- With \(\vb*{B}\) given in spherical coordinates we have \[ \mathcal{A}_{\mathrm{S}} = \mathcal{A}_{\mathrm{N}} + e^{i\phi} \dd{e^{-i\phi}}. \]
- Similarity to the Dirac monopole due to the local \(\mathrm{U}(1)\) invariance here.
The symmetrized trace \[ \tilde{P}(A_1,\cdots,A_r) = \operatorname{str}(A_1,\cdots,A_r) = \frac{1}{r!} \sum_\sigma \tr(A_{\sigma(1)} \cdots A_{\sigma(r)}) \] is symmetric, \(r\)-linear and invariant. \[ P(A) = \tr(A^r) \] is an invariant polynomial. Acting on \(p\)-forms \(P\) becomes \[ \operatorname{str}(A_1 \eta_1,\cdots,A_r \eta_r) = \eta_1 \wedge \cdots \wedge \eta_r \operatorname{str}(A_1,\cdots,A_r). \] The diagonal combination becomes \[ P(A\eta) = \eta\wedge \cdots \wedge \eta P(A). \]
From \[P(A) = \tr(A^3)\] we define the polarization \[ \tilde{P}(A_1,A_2,A_3) = \frac{1}{6!}\cdot 3\tr(A_1A_2A_3 + A_2A_1A_3) = \operatorname{str}(A_1,A_2,A_3). \]
- \(F\) a complex vector bundle \(\mathbb{C}^2\) over \(M\).
- \(G = \mathrm{SU}(2)\).
- \(\dim M = 4\).
- Field \[ \mathcal{F} = \mathcal{F}^\alpha \frac{\sigma_\alpha}{2i}, \] where \[ \mathcal{F}^\alpha = \frac{1}{2} \mathcal{F}{^\alpha}_{\mu\nu} \dd{x^\mu} \wedge \dd{x^\nu}. \]
- Total Chern class \[ \begin{align*} c(\mathcal{F}) &= \det\qty(\mathbb{1} + \frac{i}{2\pi} \mathcal{F}^\alpha \frac{\sigma_\alpha}{2i}) \\ &= \det \begin{pmatrix} 1 + (i/2\pi)\mathcal{F}^3/(2i) & (i/2\pi) (\mathcal{F}^1 - i\mathcal{F}^2)/(2i) \\ (i/2\pi) (\mathcal{F}^1 + i\mathcal{F}^2)/(2i) & 1-(i/2\pi)(\mathcal{F}^3)/(2i) \end{pmatrix} \\ &= 1 + \frac{1}{4}\qty(\frac{i}{2\pi})^2\qty{\mathcal{F}^3 \wedge \mathcal{F}^3 + \mathcal{F}^1 \wedge \mathcal{F}^1 + \mathcal{F}^2 \wedge \mathcal{F}^2}. \end{align*}{} \]
- Individual Chern class: \[ \begin{align*} c_0(\mathcal{F}) &= 1, \\ c_1(\mathcal{F}) &= 0, \\ c_2(\mathcal{F}) &= \qty(\frac{i}{2\pi})^2 \sum_\alpha \frac{\mathcal{F}^\alpha \wedge \mathcal{F}^\alpha}{4}. \end{align*}{} \]
See Splitting Principle.
- \(P\) a \(\mathrm{U}(1)\) bundle over \(S^2\).
- \(\mathcal{A}_{\mathrm{N}}\) and \(\mathcal{A}_{\mathrm{S}}\) are local connections.
- \(\mathcal{F}^n = 0\) for \(n \ge 2\).
- Chern character \[ \mathrm{ch}(\mathcal{F}) = \mathbb{1} + \frac{i\mathcal{F}}{2\pi}. \]
- Magnetic charge \[ 2g = N = \frac{i}{2\pi} \int_{S^2} \mathcal{F} = \int_{S^2} \mathrm{ch}_1(\mathcal{F}). \]
- \(P\) a \(\mathrm{SU}(2)\) bundle over \(S^4\).
- Total Chern character \[ \mathrm{ch}(\mathcal{F}) = 2 + \cancelto{0}{\tr\qty(\frac{i \mathcal{F}}{2\pi})} + \frac{1}{2} \tr\qty(\frac{i\mathcal{F}}{2\pi})^2. \]
- Instanton number \[ \frac{1}{2} \int_{S^4} \tr\qty(\frac{i\mathcal{F}}{2\pi})^2 = \int_{S^4} \mathrm{ch}_2(\mathcal{F}). \]
- \(P\) a \(\mathrm{U}(1)\) bundle over \(M\) a \(2m\)-dimensional manifold.
- The \(m\)th Chern character \[ \frac{1}{m!} \tr\qty(\frac{i\mathcal{F}}{2\pi})^m = \qty(\frac{i}{4\pi})^m \epsilon^{\mu_1\nu_1 \cdots \mu_m \nu_m} F_{\mu_1\nu_1 \cdots \mu_m \nu_m} \dd{x^1} \wedge \cdots \wedge \dd{x^{2m}}. \]
- \(L\) a complex line bundle.
- Curvature under the Fubini-Study metric \[ \mathcal{F} = -\partial \overline{\partial} \ln(1+\abs{z}^2) = -\frac{\dd{z}\wedge \dd{\overline{z}}}{(1+z\overline{z})^2} = 2i \frac{r\dd{r}\wedge \dd{\theta}}{(1+r^2)^2}. \]
- The first Chern character \[ \mathrm{ch}_1(\mathcal{F}) = -\frac{1}{\pi} \frac{r\dd{r}\wedge \dd{\theta}}{(1+r^2)^2}. \]
- Integral of the first Chern character \[ \mathrm{Ch}_1(L) = -\frac{1}{\pi} \int \frac{r\dd{r} \dd{\theta}}{(1+r^2)^2} = -1. \]
- \(M\) a four-dimensional Riemannian manifold.
- Orthonormal frame employed.
- Structure group \(\mathrm{O}(4)\).
- Curvature two-form \[ \mathcal{R} = \frac{1}{2} \mathcal{R}_{\alpha\beta} \theta^\alpha \wedge \theta^\beta. \]
- Pontrjagin class: \[ \det\qty(\mathbb{1} + \frac{\mathcal{R}}{2\pi}) = \underbrace{1}_{p_0} \underbrace{\mathbin{-}\frac{1}{8\pi}^2 \tr \mathcal{R}^2}_{p_1} + \underbrace{\frac{1}{128\pi^4}\qty[(\tr \mathcal{R}^2)^2 - 2\tr \mathcal{R}^4]}_{p_2}. \]
- \(M = S^2\). Consider \(TS^2\).
- Curvature two-form \[ \mathcal{R}_{\theta\phi} = \sin\theta \dd{\theta} \wedge \dd{\phi}. \]
- \(p_1(S^2) = 0\) as a differential form: \[ \begin{align*} p_1(S^2) = -\frac{1}{8\pi^2} \tr \mathcal{R}^2 = \qty(\frac{1}{2\pi} \sin\theta \dd{\theta} \wedge \dd{\phi})^2. \end{align*} \]
- Reading off the Euler form: \[ e(S^2) = \frac{1}{2\pi} \sin\theta \dd{\theta} \wedge \dd{\phi}. \]
- Euler characteristic: \[ \int_{S^2} e(S^2) = 2. \]
- \(M\) a four-dimensional orientable manifold.
- The structure group of \(TM\) is \(\mathrm{O}(4)\).
- Euler class \[ e(M) = \frac{1}{2(4\pi)^2} \epsilon^{ijkl} \mathcal{R}_{ij} \wedge \mathcal{R}_{kl}. \]
- Pontrjagin class: \[ p_2(M) = \frac{1}{128\pi^4}\qty[(\tr \mathcal{R}^2)^2 - 2\tr \mathcal{R}^4] = x_1^2 x_2^2. \]
- \(M\) a compact connected and orientable four-dimensional manifold.
- Define \[ \sigma: H^2(M,\mathbb{R}) \times H^2(M,\mathbb{R}) \rightarrow \mathbb{R} \] by \[ \sigma([\alpha], [\beta]) = \int_M \alpha \wedge \beta. \]
- \(\sigma\) is a \(b^2 \times b^2\) symmetric matrix, where \[b^2 = \dim H^2(M;\mathbb{R}).\]
- Hirzebruch signature: \[ \tau(M) = p - q. \] - \(p\) and \(q\) are the number of positive and negative eigenvalues of \(\sigma\), respectively.
- Hirzebruch signature theorem: \[ \tau(M) = \int_{M} L_1(M) = \frac{1}{3} \int_M p_1(M). \]
With \[ \mathrm{ch}_{j+1}(\mathcal{F}) = \dd{\qty[k_{01} \mathcal{ch}_{j+1}(\mathcal{F}_t)]} = \dd{Q_{2j+1}}, \] we find \[ Q_{2j+1} = k_{01} \mathrm{ch}_{j+1}(\mathcal{F}_t) = \frac{1}{j!}\qty(\frac{i}{2\pi})^{j+1} \int_0^1 \delta t \mathrm{str}(\mathcal{A}, \mathcal{F}^j_t). \]
- Lagrangian: \(\mathrm{U}(1)\) bundle in three-dimensional spacetime, with \(\mathcal{A} = iA\) and \(\mathcal{F} = iF\), \[ \mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} m \epsilon^{\lambda\mu\nu} F_{\lambda\mu} A_\nu. \]
- The second term is the Chern-Simons forms of the second Chern character \(F^2\).
- Field equation \[ \partial_\mu F^{\mu\nu} + m {*} F^\nu = 0. \]
- Under \[ A_\mu \rightarrow A_\mu + \partial_\mu \theta, \] the Lagrangian changes by \[ \mathcal{L} \rightarrow \mathcal{L} + \frac{1}{4} m \epsilon^{\lambda\mu\nu} F_{\lambda\mu}(A_\nu + \partial_\nu \theta) = \mathcal{L} + \frac{1}{2} m \partial_\nu({*} F^\nu \theta). \]
See 大和言葉.
On the etymology of 大和: 諸説ある
- 山の麓
- 山門
- 門 itself from か + 戸, the latter of which is to be distinguished from 所.
- か was probably prepended the same way as in 籠, where ご from こ appears in 込む/込める.
- Why not 山戸?
- 山跡
- 跡 from 足 + 所.
- Why not 山所?
- See also 邪馬台国.
Nancy was additionally a member of Countrywide’s Model Validation Committee and one of many senior managers in cost of Countrywide Commercial Real Estate Finance.
動詞 | 丁寧語 | 尊敬語 | 謙譲語 |
---|---|---|---|
居る | 居ます | いらっしゃいます | おります |
おいでになります | |||
中国語: |
中国語: |
||
行く | 行きます | いらっしゃいます | 参ります |
おいでになります | |||
中国語: 光顧 | 中国語: 拜訪 | ||
来る | 来ます | いらっしゃいます | 参ります |
おいでになります | |||
おこしになります | |||
見えます | |||
中国語: 光臨/蒞臨 | 中国語: 拜訪 |
Kohn-Sham Equations
TDDFT. Time-Dependent Density Functional Theory.
Stereographic projection \(S^2 \rightarrow \mathbb{C}\) naturally promote \(S^2\) to a complex manifold.
Torus:
- Let \(L\) be a lattice \[L(\omega_1,\omega_2) = \set{\omega_1 m + \omega_2 n|m,n\in \mathbb{Z}}.\]
- \(\omega_1/\omega_2 \notin \mathbb{R}\).
- Take \(\Im(\omega_2/\omega_1)>0\).
- Homeomorphism \[ T^2 \cong \mathbb{C}/L(\omega_1,\omega_2). \]
- The pair \((\omega_1,\omega_2)\) defined a complex structure on \(T^2\).
- Two lattices \(L(\omega_1,\omega_2)\) coincides if and only if there exists a matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}(2,\mathbb{Z}) = \mathrm{SL}(2,\mathbb{Z})/\mathbb{Z}_2 \] where \(\pm A\) are identified such that \[ \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}. \]
- Take \((1,\tau)\) to be the generators of a lattice.
- \(\tau\) and \(\tau'\) define the same complex structure if \[ \tau = \frac{a\tau + b}{c\tau + d} \] where \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}(2,\mathbb{Z}). \]
- Modular transform: \(\tau \rightarrow \tau'\) generated by
- \(\tau \rightarrow \tau+1\),
- \(\tau \rightarrow -1/\tau\).
Complex projective space: denoted by \(\mathbb{C}P^n\).
- \(z\in \mathbb{C}^{n+1}\) identified with \(z'\) if \(z=az'\) for some complex number \(a\neq 0\).
- The \(n+1\) numbers \(z^0,\cdots,z^n\) are called homogeneous coordinates.
- For \[ U_\mu = \set{z\in \mathbb{C}\backslash\qty{0} | z^\mu \neq 0}, \] a chart could defined by \(\xi^\nu_{(\mu)} = z^\nu/z^\mu\).
Complex Grassman manifolds:
- \[ G_{k,n}(\mathbb{C}) = M_{k,n}(\mathbb{C})/\mathrm{GL}(k,\mathbb{C}). \]
- \(M_{k,n}\) consists of all \(k\times n\) matrices of rank \(k\).
- In particular, \[ \mathbb{C}P^n = G_{1,n+1}(\mathbb{C}). \]
- A chart \(U_\alpha\) may be defined to be a subset of \(G_{k,n}\) such that \(\det A_\alpha \neq 0\).
- The \(k(n-k)\) coordinates of \(U_\alpha\) are given by the non-trivial entries of the matrix \(A_\alpha^{-1} A\).
Algebraic variety:
- The common zeros of a set of homogeneous polynomials.
- A compact submanifold of \(\mathbb{C}P^n\).
- \(U_\mu\) defined as in a complex projective space.
Let \[ \omega = \omega_{\mu\bar{\nu}} \dd{z^\mu} \wedge \dd{\overline{z}^\nu}. \] Then \[ \partial \omega = \pdv{\omega_{\mu\bar{\nu}}}{z^\lambda} \dd{z^\lambda} \wedge \dd{z^\mu} \wedge \dd{\overline{z}^\nu}, \] and \[ \overline{\partial} \omega = \pdv{\omega_{\mu\bar{\nu}}}{\overline{z}^\lambda} \dd{\overline{z}^\lambda} \wedge \dd{z^\mu} \wedge \dd{\overline{z}^\nu}. \]
Theorem. Let \(\omega \in \Omega^q(M)^{\mathbb{C}}\) and \(\xi\in \Omega^p(M)^{\mathbb{C}}\). Then
\[ \partial \partial = (\partial\overline{\partial} + \overline{\partial}\partial) \omega = \overline{\partial}\overline{\partial} \omega = 0. \]
\[ \partial\overline{\omega} = \overline{\overline{\partial}\omega},\quad \overline{\partial}\overline{\omega} = \overline{\partial\omega}. \]
\[ \partial(\omega \wedge \xi) = \partial \omega \wedge \xi + (-1)^q \omega\wedge \partial \xi. \]
\[ \overline{\partial} (\omega \wedge \xi) = \overline{\partial} \omega \wedge \xi + (-1)^q \omega \wedge \overline{\partial}\xi. \]
Holomorphic \(r\)-form: \(\omega\in \Omega^{r,0}(M)\) that satisfies \[ \overline{\partial}\omega = 0. \]
Doubeault complex: the sequence of \(\mathbb{C}\)-linear maps \[ \Omega^{r,0}(M) \xrightarrow{\bar{\partial}} \Omega^{r,1}(M) \xrightarrow{\bar{\partial}}\cdots \xrightarrow{\bar{\partial}} \Omega^{r,m-1}(M) \xrightarrow{\bar{\partial}} \Omega^{r,m}(M) \] where \(m = \dim_{\mathbb{C}}M\).
Let \(M = \mathbb{C}^m\). Let the metric be given by \[ \begin{align*} \delta\qty(\pdv{}{x^\mu},\pdv{}{x^\nu}) &= \delta\qty(\pdv{}{y^\mu}, \pdv{}{y^\nu}) = \delta_{\mu\nu}, \\ \delta\qty(\pdv{}{x^\mu},\pdv{}{y^\nu}) &= 0. \end{align*}{} \] Since \[ J \pdv{}{x^\mu} = \pdv{}{y^\mu},\quad J\pdv{}{y^\mu} = -\pdv{}{x^\mu}, \] we find that \(\delta\) is Hermitian. In complex coordinates, we have \[ \begin{align*} \delta\qty(\pdv{}{z^\mu}, \pdv{}{z^\nu}) &= \delta\qty(\pdv{}{\overline{z}^\mu}, \pdv{}{\overline{z}^\nu}) = 0, \\ \delta\qty(\pdv{}{z^\mu}, \pdv{}{\overline{z}^\nu}) &= \delta\qty(\pdv{}{\overline{z}^\mu}, \pdv{}{z^\nu}) = \frac{1}{2}\delta_{\mu\nu}. \end{align*}{} \] The Kähler form is given by \[ \Omega = \frac{i}{2} \sum_{\mu=1}^m \dd{z^\mu} \wedge \dd{\overline{z}^\mu}. \] The Kählter potantial is given by \[ \mathcal{K} = \frac{1}{2} \sum z^\mu \overline{z}^\mu. \] The Kähler manifold \(\mathbb{C}\) is called the complex Euclid space.
Any orientable complex manifold \(M\) with \(\dim_{\mathbb{C}} M = 1\) is Kähler. One-dimensional compact orientable complex manifolds are Riemann surfaces.
\(\mathbb{C}P^m\) is a Kähler manifold. We define the Ka¨hler potential on \(U_\alpha\) by \[ \log \mathcal{K}_\alpha(p) = \log \sum_{\nu=1}^{m+1} \abs{\frac{z^\nu}{z^\alpha}}^2. \] The Kähler form may be defined by \[ \Omega = i\partial \overline{\partial} \log \mathcal{K}_\alpha. \] It can be shown that \[ g(X,Y) = \Omega(X,JY) \] is Hermitian. It's positive-definite since \[ g(X,X) = 2 \qty[\sum_\mu \abs{X^\mu}^2 \qty(\sum_\lambda \abs{\zeta^\lambda}^2 + 1) - \abs{\sum_\mu X^\mu \zeta^\mu}^2]\qty(\sum_\lambda \abs{\zeta^\lambda}^2 + 1)^{-2}, \] where \(\zeta^\lambda\) are the inhomogeneous coordinates. The metric is called the Fubini-Study metric.
Let \(M\) be a Kähler manifold.
Newlander–Nirenberg Theorem. \[ \substack{\text{Integrable almost} \\ \text{complex structure}} \Leftrightarrow \substack{\text{Vanishing} \\ N(X,Y)} \Leftrightarrow \substack{\text{Complex} \\ \text{manifold}}. \]
\(\Gamma = \mathbb{C}/C_3\) is a third of the complex plane. The holonomy group is \(C_3\). \(\Gamma\) is a manifold.
Let \[ M = T^2 = \mathbb{C}/\qty{z \sim z+m+ne^{i\pi/3}}, \] and \(C_3\) acts on \(T^2\) as \[ z \mapsto e^{2\pi i/3 z}. \] Then \(\Gamma = T^2/C_3\) is homeomorphic to \(S^2\). The holonomy around each fixed point is \(C_3\).
\(T = \mathbb{C}^3/L\) is a three-dimensional complex torus where \(L\) is a lattice in \(\mathbb{C}^3\). \[ T = T_1 \times T_2 \times T_3. \] Let \(C_3\) act on \(T\) by \[ z_i \mapsto e^{2\pi i/3}z_i. \] There are \(27\) fixed points in the orbifold, each of which is a conical singularity. The orbifold is not a manifold.
How do we discover topological materials from band representations?
Filling-enforced quantum band insulators in spin-orbit coupled crystals.
FEQBI. Filling-Enforced Quantum Band Insulaor.
TI. Topological Insulator.
TCI. Topological Crystal Insulator.
IR. Irreducible Representation.
Conjugacy classes of \(D_3\) includes \(E\), \(2C_3\), \(3C_2'\), each of which has \(1\), \(2\) and \(3\) elements.
Topological Matter School 2018 - Juan Luis Mañes - Lecture 4
\(O(3)\) acts on an electron on the p-orbit by \[ D_{1}^- \otimes D_{1/2}^{+} = D_{1/2}^- \oplus D_{3/2}^-. \] Note that on both sides we have a \(-1\) parity.
When taking \(\mathrm{O}(3)\) as a subgroup of \(\mathrm{SU}(2)\), for \(j=l+1/2\) we should have \[ \rho(C_{\theta}) \neq \rho(C_{\theta + 2\pi}). \] Therefore, each conjugacy class of \(\mathrm{O}_3\) should split into \(C\) and \(\overline{C}\) (\(C\) multiplied by \(C_{2\pi}\) I guess).
Every two-dimensional point group could be embedded into a three-dimensional point group. We may either map \(E\) to \(E\) or \(m\) (reflection about the \(\mathbb{R}^2\) plane). In the latter case we may obtain a double-valued representation.
Little Group \(=\) Site Symmetry Group \(=\) Isotropy Group \(=\) Stabilizer.
little group: \(G_{\vb*{k}}\) is the set of symmetries that leave \(\vb*{k}\) invariant. \[ \color{warning} G_{\vb*{k}} = \Set{g\in G|g\vb*{k} = \vb*{k} + \vb*{K}}, \] where \(\vb*{K}\) is a reciprocal lattice vector.
\(G_{\vb*{k}}\) is infinite.
Little cogroup: \(\tilde{G}_{\vb*{k}}\) defined by \[ \tilde{G}_{\vb*{k}} = G_{\vb*{k}} / T \] where \(T\in G\) is the subgroup of lattice translations. The little cogroup is isomorphic to a point group.
Site symmetry groups: \(G_{\vb*{q}}\) defined by \[ G_{\vb*{q}} = \Set{g\in G|g\vb*{q} = \vb*{q}}, \] where \(g\) may contain a nonzero translation.
\(G_{\vb*{q}}\) is finite.
Topological Matter School 2018 - Juan Luis Mañes - Lecture 2
Roto-Reflections: Rotation combined with a reflection about a plane perpendicular to the axis.
Trace representation trace: \[ \chi_M(g) = n_{\mathrm{inv}}(g)\chi_V(g), \] where \(n_{\mathrm{inv}}(g)\) is the number of atoms fixed under this operation.
By \[ \qty{R,\vb*{l}} \] we denote a operation \[ \vb*{r} \rightarrow R\vb*{r} + \vb*{l}. \]
Wikibooks: Structural Biochemistry/Character Table.
Symmetry Operations and Character Tables.
A: singly degenerate.
B: singly degenerate.
E: doubly degenerate.
T: triply degenerate.
g: symmetric with respect to inversion center.
u: antisymmetric with respect to inversion center.
1: symmetric with respect to perpendicular \(C_2\) axis.
2: antisymmetric with respect to perpendicular \(C_2\) axis.
': designates symmetric with respect to horizontal reflection plane.
'': designates antisymmetric with respect to horizontal reflection plane. In particular, we have dimensions \begin{align*} \color{red}\dim A &\color{red}= \dim B = 1, \\ \color{red}\dim E &\color{red}= 2, \\ \color{red}\dim T &\color{red}= 3. \end{align*}
\(\sigma_h\): a plane perpendicular to the axis; horizontal.
\(\sigma_v\): a vertical mirror containing the main axis.
For Wyckoff positions of a specific SG, look out the Bilbao Crystallographic Server.
A Wyckoff position is a set of points whose site symmetry groups are conjugate to each other. A Wyckoff position may contain multiple points.
Wyckoff positions are labelled \(n\alpha\), where \(n\) is the multiplicity of the position and \(\alpha\) is a letter that orders Wyckoff positions in a particular space group by ascending \(n\).
Maximal Wyckoff positions: those whose site-symmetry groups are not a proper subgroup of any other site-symmetry group.
\(\vb*{k}^\star\) denote all points \(\set{g\vb*{k}| g\in G}\) in the BZ.
IR of the space groups are labelled by \(\vb*{k}^\star\) and are induced from IRs of the little groups.
Topological Matter School 2018 - Juan Luis Mañes - Lecture 1.
Point group:
Point group of \(\ce{CH4}{}\):
- Vector representation:
- The four vertices mix under symmetry operations, therefore triply degenerate.
\begin{align*} M &= A_1 \oplus E \oplus 3T_2 \oplus T_1, \\ V &= T_2, \\ R &= T_1, \\ \mathrm{Vib} &= M-V-R = A_1 \oplus E \oplus 2T_2. \end{align*} Since \(\dim \mathrm{Vib} = 9\) we have \(9\) vibration modes, \(1\) non-degenerate, \(1\) doubly and \(2\) triply degenerate.
Point group of \(\ce{CH_3D}{}\):
\(C_{3v}{}\) \(E\) \(2C_3\) \(3C'_2\) \(A_1\) \(1\) \(1\) \(1\) \(A_2\) \(1\) \(1\) \(-1\) \(E\) \(2\) \(-1\) \(0\)
- Vector representation:
- The lower three vertices mix under symmetry operations, therefore doubly degenrate; plus
- The upper vertex in invariant under any symmetry operations.
\begin{align*} M &= 4A_1 \oplus A_2 \oplus 5E, \\ V &= A_1 \oplus E, \\ R &= A_2 \oplus E, \\ \mathrm{Vib} &= M - V - R = 3A_1 \oplus 3E. \end{align*} Since \(\dim \mathrm{Vib} = 9\) we have \(9\) vibration modes, \(3\) non-degenerate and \(3\) doubly degenerate.
Topological Matter School 2018 - Juan Luis Mañes - Lecture 3.
Topological Matter School 2018 - Juan Luis Mañes - Lecture 4.
From character tables
\(C_{3v}{}\) \(E\) \(2C_3\) \(3C'_2\) \(A_1\) \(1\) \(1\) \(1\) \(A_2\) \(1\) \(1\) \(-1\) \(E\) \(2\) \(-1\) \(0\)
\(T_d\) \(E\) \(8C_3\) \(3C'_2\) \(6S_4\) \(6\sigma_d\) \(A_1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(A_2\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(E\) \(2\) \(-1\) \(2\) \(0\) \(0\) \(T_2\) \(3\) \(0\) \(-1\) \(1\) \(-1\) \(T_1\) \(3\) \(0\) \(-1\) \(-1\) \(1\) we find the subduction table
\(T_d\) \(A_1\) \(A_2\) \(E\) \(T_2\) \(T_1\) \(C_{3v}{}\) \(A_1\) \(A_2\) \(E\) \(A_1\oplus E\) \(A_2\oplus E\) Triply degenerate level of a \(T_d\) system will split into two levels, one if which double degenerate.
In the central field approximation \[ H\ket{nlm} = E_{nl}\ket{nlm}, \] each level has a degeneracy \(2(2l+1)\). In crystal, the symmetry is reduced from \(\mathrm{O}(3)\) to the local point group.
Weak spin-orbit: from the character table \(\mathrm{O}(3)\) to \(C_{3v}{}\)
\(C_{3v}{}\) \(E\) \(2C_3\) \(3C'_2\) \(A_1\) \(1\) \(1\) \(1\) \(A_2\) \(1\) \(1\) \(-1\) \(E\) \(2\) \(-1\) \(0\)
\(O(3)\) \(E\) \(2C_3\) \(3C'_2\) \(D_0^+\) \(1\) \(1\) \(1\) \(D_1^-\) \(3\) \(0\) \(1\) \(D_2^+\) \(5\) \(-1\) \(1\) \(D_3^-\) \(7\) \(1\) \(1\) we find \begin{align*} s &\rightarrow a_1, \\ p &\rightarrow a_1 \oplus e, \\ d &\rightarrow a_1 \oplus 2e, \\ f &\rightarrow 2a_2 \oplus a_2 \oplus 2e. \end{align*}
Strong spin-orbit: from the character table \(\mathrm{SU}(2)\) to \(C_{3v}{}\)
\(C_{3v}{}\) \(E\) \(\overline{E}{}\) \(2C_3\) \(2\overline{C}_3\) \(3C'_2\) \(3\overline{C}'_2\) \(A_1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(A_2\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(^1\overline{E}{}\) \(1\) \(-1\) \(-1\) \(1\) \(i\) \(-i\) \(^2\overline{E}{}\) \(1\) \(-1\) \(-1\) \(1\) \(-i\) \(i\) \(E\) \(2\) \(2\) \(-1\) \(-1\) \(0\) \(0\) \(\overline{E}_1\) \(2\) \(-2\) \(1\) \(-1\) \(0\) \(0\)
\(O(3)\) \(E\) \(\overline{E}{}\) \(2C_3\) \(2\overline{C}_3\) \(3C'_2\) \(3\overline{C}'_2\) \(D_{1/2}^-\) \(2\) \(-2\) \(1\) \(-1\) \(0\) \(0\) \(D_{3/2}^-\) \(4\) \(-4\) \(-1\) \(1\) \(0\) \(0\) we find \begin{align*} D^{-}_{1/2} &= \overline{E}_1, \\ D^{-}_{3/2} &= \overline{E}_1 \oplus {}^1\overline{E} \oplus {}^2\overline{E}. \end{align*}
Group p2:
The rotation centers in a p2 crystal are also Wyckoff positions:
Note that the symmetry group at 1a, 1b, 1c and 1d are isomorphic but not conjugate to each other.
1a, 1b, 1c and 1d are maximal Wyckoff positions while 2e is not.
Little groups of points of high symmetry in the BZ (\(\Gamma,X,Y,M\)) equal to the full group \(G\). The little groups thereof are \(C_2\).
Since there are two IRs to \(C_2\), the band representations are given by \[ \rho_{G,1\alpha,A/B}(g) = \begin{cases} e^{-i\vb*{k}\cdot \vb*{t}}, & \text{if } g = \qty{E|\vb*{t}}, \\ \pm e^{i\vb*{k}\cdot (\vb*{t} - 2\vb*{q}_\alpha)}, & \text{if } g = \qty{C_2|\vb*{t}}. \end{cases} \] Different representations are distinguished by their \(\qty{C_2|\vb*{0}}\) eigenvalues.
EBR. Elementary Band Representation.
Topological Matter School 2018 - Juan Luis Mañes - Lecture 5.
RL: Reciprocal Lattice.
Character of the little group of \(p_z\)-orbital: \[ \color{red} \chi_T(g,\vb*{k}) = \sum_{i=1}^A \varphi_i(g,\vb*{k}) \theta_i(g) \chi_\tau(g). \]
The atoms in graphene all belong to the same Wyckoff position. There are two atoms per unit cell in graphene, \(8\) orbitals in total: \[ \qty{\phi^1_s, \phi^1_{p_x}, \phi^1_{p_y}, \phi^1_{p_z},\phi^2_s, \phi^2_{p_x}, \phi^2_{p_y}, \phi^2_{p_z}}. \] \((s,p_x,p_y)\) are even while \(p_z\) is odd under \(\sigma_h\). We discard \(\sigma_h\) and work with \(C_{6v}\) only: \[ C_{6v} = \qty{E, C_2, C_3^\pm, C_6^\pm, \sigma_{di}, \sigma_{vi}}. \] The site symmetry group for each kind of atom is \[ C_{3v} = \qty{E, C_3^\pm, \sigma_{di}}. \] We have \[ D_1^- = A_1(p_z) \oplus E(p_x,p_y) \] and therefore \(p_z \rightarrow a_1\).
We introduce two Bloch waves here: \[ \psi_{\vb*{k}}^a(\vb*{r}) = \sum_{\vb*{t}\in \mathcal{T}} \phi_{p_z}(\vb*{r} - \vb*{r}_a - \vb*{t}) e^{i\vb*{k}\cdot \vb*{t}} \] where \(a = 1,2\) denotes the two kinds of atoms. \(\phi^1_{\vb*{k}}\) and \(\psi^2_{\vb*{k}}\) defines the 2-dimensional representation \(T_{\vb*{k}}\) of the little group. Now we obtain the characters of little groups at points of high symmetry.
- \[ T_\Gamma = A_1 \oplus B_2 = \Gamma_1 \oplus \Gamma_3. \]
- \[ T_K = K_3. \]
- \[ T_M = M_1 \oplus M_2. \]
- If \(k\) is on a symmetry line, then \(T_{\vb*{k}}\) is a subgroup of the little groups for the endpoints.
We could associate the names of IRs with bands, since \(G\) acts on them.
Let \(\vb*{k}_1\) be a point near a high-symmetry point \(\vb*{k}_0\). We have \[ G_{\vb*{k}_1} \subset G_{\vb*{k}_0} \] and the compatibility relations \[ \color{orange} \rho_1 = \rho_0 \downarrow G_{\vb*{k}_1}. \]
After a linear transformation, \(\vb*{v} = \vb*{A}\vb*{n}\) could be reformulated into \[ \vb*{v}' = \vb*{D} \vb*{n}', \] where \(\vb*{D}\) is a diagonal matrix of size \(n\times m\).
The \(\vb*{k}\) points of p2 fall into five categories:
- \(C_2\), which admits two irreducible representations, denoted \(A\) and \(B\): \(\Gamma\), \(X\), \(Y\) and \(M\).
- Trivial: GP. Therefore, \(V_G\) has nine elements in its basis: \[ \Gamma_\pm, X_\pm, Y_\pm, M_\pm, GP. \] Compatibility relations: since lines connecting different \(\vb*{k}\)'s are trivial, the only compatibility relation is that the dimension of the representation at each \(\vb*{k}\) be the same. \[ n_{\Gamma+} + n_{\Gamma-} = n_{X+} + n_{X-} = n_{Y+} + n_{Y-} = n_{M+} + n_{M-} = n_{GP}. \]
- Quasiband representation: \[ \vb*{v} = (n_{\Gamma+}, N - n_{\Gamma+}, n_{X+}, N-n_{X+}, n_{Y+}, N-n_{Y+}, n_{M+}, N-n_{M+}, N). \]
- EBR: \begin{align*} \vb*{e}_{1aA} &= (1,0,1,0,1,0,1,0,1), \\ \vb*{e}_{1aB} &= (0,1,0,1,0,1,0,1,1), \\ \vb*{e}_{1bA} &= (1,0,0,1,1,0,0,1,1), \\ \vb*{e}_{1bB} &= (0,1,1,0,0,1,1,0,1), \\ \vb*{e}_{1cA} &= (1,0,1,0,0,1,0,1,1), \\ \vb*{e}_{1cB} &= (0,1,0,1,1,0,1,0,1), \\ \vb*{e}_{1dA} &= (1,0,0,1,0,1,1,0,1), \\ \vb*{e}_{1dB} &= (0,1,1,0,1,0,0,1,1). \end{align*} We have \[ D = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \]
- \(0\) of multiplicity \(3\): we have only \(5\) degrees of freedom.
- \(1\) of multiplicity \(4\): four of the dimension are trivial.
- \(2\) of multiplicity \(1\): topologically nontrivial part, \(\mathbb{Z}_2\) symmetry.
- Indicator: \[\nu = n_{\Gamma+} + n_{M+} - n_{X+} - n_{Y+} \operatorname{mod} 2 \in \mathbb{Z}_2.\]
Symmetries:
TRIM. Time-Reversal Invariant Momenta.
Wyckoff positions:
EBRs: 16 in total.
HOTI. High Order Topological Insulator.
The Indicator group of P1̅1' is \(\mathbb{Z}_4\), and \[ \nu_4 = \sum_{\mathrm{TRIMs} \vb*{k}_i} n_{\vb*{k}_i -} \operatorname{mod} 4, \] where \(n_{\vb*{k}_i -}\) the multiplicity of IRs at the TRIM \(\vb*{k}_i\) with negative inversion eigenvalue.
In the Kane-Mele model of the p6mm group, the four-bane EPR induced from \(p_z\) orbitals at honeycomb sites (2b Wyckoff position) may split into two disconnected components (in the topological phase), each of which has a nontrivial \(\mathbb{Z}_2\) index.
QBR. Quasiband Representation.
TQBR. Topological Quasiband Representation.
OAL. Obstructed Atomic Limits.
IR-equivalent bands: two groups of bands with the same IRs at all high-symmetry points in the BZ.
It is possible that two such bands transforms identically under all symmetries at each point in the BZ but differ by a topologically nontrival global gauge transformation. Such band representations are called obstructed atomic limits.
In F222 each EBR induced from the 4a position is IR-equivalent to that induced from the 4b position. The basis functions are related by \[ \ket{w_b} = e^{i(k_2+k_3-k_1)/2} \ket{w_a}. \] If \(H(t)\) has occupied band 4a at \(t=0\) and 4b at \(t=1\), then a gap-closing phase transition must occur at some intermediate \(t\).
Example copied from Building blocks of topological quantum chemistry: Elementary band representations.
\(C_{6v}{}\) | \(E\) | \(C_{3z}{}\) | \(C_{2z}{}\) | \(C_{6z}{}\) | \(m\) | \(C_{6z}m\) | \(\overline{E}{}\) |
---|---|---|---|---|---|---|---|
\(\Gamma_1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\Gamma_2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) |
\(\Gamma_3\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) |
\(\Gamma_4\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
\(\Gamma_5\) | \(2\) | \(-1\) | \(2\) | \(-1\) | \(0\) | \(0\) | \(2\) |
\(\Gamma_6\) | \(2\) | \(-1\) | \(-2\) | \(1\) | \(0\) | \(0\) | \(2\) |
\(\overline{\Gamma}_7\) | \(2\) | \(-2\) | \(0\) | \(0\) | \(0\) | \(0\) | \(-2\) |
\(\overline{\Gamma}_8\) | \(2\) | \(1\) | \(0\) | \(-\sqrt{3}{}\) | \(0\) | \(0\) | \(-2\) |
\(\overline{\Gamma}_9\) | \(2\) | \(1\) | \(0\) | \(\sqrt{3}{}\) | \(0\) | \(0\) | \(-2\) |
\(C_{3v}{}\) | \(E\) | \(C_{3}{}\) | \(m\) | \(\overline{E}{}\) |
---|---|---|---|---|
\(\overline{\Gamma}_4\) | \(1\) | \(-1\) | \(-i\) | \(-1\) |
\(\overline{\Gamma}_5\) | \(1\) | \(-1\) | \(i\) | \(-1\) |
\(\overline{\Gamma}_6\) | \(2\) | \(1\) | \(0\) | \(-2\) |
\(C_{2v}{}\) | \(E\) | \(C_{2}{}\) | \(m\) | \(C_{2}m\) | \(\overline{E}{}\) |
---|---|---|---|---|---|
\(\overline{\Gamma}_5\) | \(2\) | \(0\) | \(0\) | \(0\) | \(-2\) |
\(C_{s}{}\) | \(E\) | \(m\) | \(\overline{E}{}\) |
---|---|---|---|
\(\overline{\Gamma}_3\) | \(1\) | \(-i\) | \(-1\) |
\(\overline{\Gamma}_4\) | \(1\) | \(i\) | \(-1\) |
Little group and little cogroup?
What do we mean when we say a time-reversal symmetric representation?
Band representation and quasiband representation?
What do we mean when we say %#@&^! is protected by $&*<# symmetry?
Help me! My project is due tomorrow and I don't have access to Wikipedia!
More than one billion people have no access to Wikipedia, Google, etc. Don't wanna be one of them? See if this post could help you.
See Setup My Client first if you don't have a V2ray client installed yet.
I'm currently using V2rayU as my client on Mac.
vmess
link, or JSON from the Configuration section.The design of the UI is quite intuitive and you may be able to figure out the usage on your own with little effort. Nevertheless, the following tips may save your time.
I'm currently using v2rayN as my client on Windows.
vmess
link, or JSON from the Configuration section.Generally, you may be able to figure out its usage after a short time. If it doesn't work, you may check that
I'm currently using v2ray-linux-64 as my client on Ubuntu. I have not yet tested it on other distributions.
config.json
from the Configuration section into the directory where the executable v2ray
lies.You should be a far better Linux user than I am. So, I don't have much advice here. Just
Also check out v2ray-core as well as other clients.
I'm currently using Shadowrocket as my client on iOS.
rxz530@163.com
SRGB#0ff
wp123
wp345
wp456
1988 01 15
vmess
link, or JSON from the Configuration section.I'm currently using v2rayNG as my client on Android.
vmess
link, or JSON from the Configuration section.Don't hesitate to contact me!
For those who wanna setup their own servers only. If you are already satisfied with whatever you get from the previous section, you don't have to go ahead.
For an easier approach, see How To Setup v2ray Websocket(WS)+TLS+CDN on a VPS.
For a V2ray server to work, you need
Theoretically, you don't need a domain name for the server to work. However, your server would be unlikely to survive the powerful censorship in that case.
The procedure could take around an hour. Note that if you are getting your domain name from Aliyun, it may take additional procedures and time for Aliyun to get your domain name ready. I would therefore advise you to acquire a domain name before you proceed.
Make sure that the operating system of your VPS is CentOS 7. Exactly 7.
I setup my VPS
These are about the fastest I could get. You may have your own choice and don't forget to leave a comment below if you find a faster one.
Typically, it would take from 10 minutes to an hour for the VPS to be ready.
Follow the instructions from your server provider so that you could ssh
to your server.
I couldn't give a detailed procedure here since it varies from one provider to another.
A Record
).ping
your domain name and make sure it is resolved to the IP address of your VPS.The following procedure may not be the simplest one. I will revise it in the future.
ntpdate ntp.ubuntu.com
.git clone https://github.com/v2fly/fhs-install-v2ray.git
cd fhs-install-v2ray
chmod 777 install-release.sh
if necessary,./install-release.sh
systemctl enable v2ray
config.json
in /usr/local/etc/v2ray
. Confirm that with ls
.
config.json
with this config.json.
wget http://zechen.site/scribble-files/config.json
wget http://zechen.site/scribble-files/v2ray_ws_tls.sh
chmod 777 v2ray_ws_tls.sh
if necessary../v2ray_ws_tls.sh
===========配置参数============
地址:abcdef.xyz
端口:443
uuid:33c917a5-c9d6-453c-9d02-a464d2474030
额外id:64
加密方式:aes-128-gcm
传输协议:ws
别名:myws
路径:0368
底层传输:tls
/usr/local/etc/v2ray/config.json
:
"id": "1a7330b8-878c-4a47-8dfe-1c9066ae938b",
to"id": "whatever you see from the above output, e.g. 33c917a5-c9d6-453c-9d02-a464d2474030",
Don't forget the comma!"path": "/8f2f"
to"path": "whatever you see from the above output, e.g. 0368"
systemctl start v2ray
Don't hesitate to contact me if there is any problem!
![]() |
Quantum Field Theory (III) | |
Feynman Diagrams |
Renormalization
やはりディラックの量子電磁力学はまちがっている。
![]() |
Quantum Field Theory (V) | |
Applications of Feynman Diagrams |
![]() |
Index | |
Index |
Mathematical Prerequisites
物理学のは嫌なので表現論に極振りしたいと思います
Gaussian integral \[ \qty(\prod_i \int \dd{\theta^*_i} \dd{\theta}_i) e^{-\theta^*_i B_{ij} \theta_j} = \qty(\prod_i \int \dd{\theta^*_i} \dd{\theta_i}) e^{-\sum_i \theta^*_i b_i \theta_i} = \det B. \] \[ \qty(\prod_i \int \dd{\theta^*_i} \dd{\theta_i}) \theta_k \theta^*_l e^{-\theta^*_i B_{ij} \theta_j} = (\det B) (B^{-1})_{kl}. \]
Theorem. If \(N=2l\), then representations of dimension \(2^l\) are equivalent.
We define \[ \color{orange}\gamma^5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3, \] which satisfies the same conditions as \(\gamma_0\) to \(\gamma_4\):
We define
The Weyl or Chiral representation is given by \[ \gamma^0 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix},\quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}. \]
Or, \[ \gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ \overline{\sigma}^\mu & 0 \end{pmatrix}. \]
Under this representation, \[ \gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} -\mathbb{1} & 0 \\ 0 & \mathbb{1} \end{pmatrix}. \]
Useful identities of \(\sigma\):
Useful identities of \(\gamma\):
Vectors are transformed in the familiar way: \[ \partial_\mu \phi(x) \rightarrow (\Lambda^{-1}){^\nu}{_\mu} (\partial_\nu \phi) (\Lambda^{-1} x). \]
On the LHS we have quantities in the old frame while on the RHS in the new frame.
For a general \(n\)-component multiplet, the transformation law is given by an \(n\)-dimensional representation of the Lorentz group: \[ \color{red} \varphi_a(x) \rightarrow U^{-1}(\Lambda) \varphi_a(x) U(\Lambda) = L{_a}{^b}(\Lambda) \varphi_b(\Lambda^{-1}x). \] This is the most general transformation rule! You should fucking remember it! As well as its infinitesimal form! \[ \color{red} \varphi_a(x) \rightarrow (\delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b}) \varphi_b. \] Don't give a shit to \(S^{\mu\nu}\) now. We don't know it until we obtain a specific representation of the Lorentz group.
In infinitesimal form,
Go back and see the transformation rule (marked in red). Left-handed / right-handed spinors transforms according to the \(S^{\mu\nu}_{\mathrm{L}}\) / \(S^{\mu\nu}_{\mathrm{R}}\) specified below \[ \color{red} \psi_a(x) \rightarrow (\delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b}) \psi_b. \] where \begin{align*} \color{blue}S^{0i}_{\mathrm{L}} &\color{blue}= -\frac{i}{2}\sigma^i, \\ \color{blue}S^{0i}_{\mathrm{R}} &\color{blue}= +\frac{i}{2}\sigma^i, \\ \color{blue}S^{ij}_{\mathrm{L}/\mathrm{R}} &\color{blue}= \frac{1}{2}\epsilon^{ijk} \sigma^k.\\ \end{align*} Or, written explicitly, as \begin{align*} \color{red}\psi_{\mathrm{L}} &\color{red}\rightarrow (1 - \frac{i}{2}\vb*{\theta}\cdot \vb*{\sigma} - \frac{1}{2}\vb*{\beta}\cdot \vb*{\sigma})\psi_{\mathrm{L}}, \\ \color{red}\psi_{\mathrm{R}} &\color{red}\rightarrow (1 - \frac{i}{2}\vb*{\theta}\cdot \vb*{\sigma} + \frac{1}{2}\vb*{\beta}\cdot \vb*{\sigma})\psi_{\mathrm{R}}. \end{align*}
Dirac spinors has four components. It transforms according to \[ \color{red} \psi_a(x) \rightarrow (\delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b}) \psi_b. \] where \[ \color{blue} S^{\mu\nu} = \frac{i}{4}[\gamma^\mu,\gamma^\nu] = \begin{pmatrix} S^{\mu\nu}_{\mathrm{L}} & 0 \\ 0 & S^{\mu\nu}_{\mathrm{R}} \end{pmatrix}. \]
The upper two components transforms like a left-handed spinor while the lower two like a right-handed. \[ \color{orange} \psi = \begin{pmatrix} \psi_{\mathrm{L}} \\ \psi_{\mathrm{R}} \end{pmatrix}. \]
In Peskin the exponent of the infinitesimal transform is denoted by \(\Lambda_{1/2}\): \[ \delta{_a}{^b} + \frac{i}{2} \delta \omega_{\mu\nu} (S^{\mu\nu}){_a}{^b} \xrightarrow{\exp} \Lambda_{1/2} = \exp\qty(-\frac{i}{2}\omega_{\mu\nu}S^{\mu\nu}). \]
We define \[ \color{orange} \overline{\psi} = \psi^\dagger \gamma^0. \]
The transformation laws are given by
Definition | Count |
---|---|
\(1\) | 1 |
\(\gamma^\mu\) | 4 |
\(\gamma^{\mu\nu} = \gamma^{[\mu}\gamma^{\nu]} = -i\sigma^{\mu\nu}{}\) | 6 |
\(\gamma^{\mu\nu\rho} = \gamma^{[\mu}\gamma^{\nu}\gamma^{\rho]}{}\) | 4 |
\(\gamma^{\mu\nu\rho\sigma} = \gamma^{[\mu}\gamma^{\nu}\gamma^{\rho}\rho^{\sigma]}{}\) | 1 |
\(\overline{\psi} \gamma^{\mu\nu} \psi\) transforms like a tensor of rank 2: \[ \overline{\psi} \gamma^{\mu\nu} \psi \rightarrow \Lambda{^\mu}{_\alpha} \Lambda{^\nu}{_\beta} \overline{\psi} \gamma^{\alpha\beta} \psi. \]
Definition | Transformation | Count |
---|---|---|
\(1\) | \(\overline{\psi}\psi\): scalar | 1 |
\(\gamma^\mu\) | \(\overline{\psi}\gamma^\mu\psi\): vector | 4 |
\(\displaystyle \sigma^{\mu\nu} = \frac{i}{2}[\gamma^\mu,\gamma^\nu]\) | \(\overline{\psi}\sigma^{\mu\nu}\psi\): tensor | 6 |
\(\gamma^\mu \gamma^5\) | \(\overline{\psi}\gamma^\mu\gamma^5\psi\): pseudo-vector | 4 |
\(\gamma^5\) | \(\overline{\psi}\gamma^5\psi\): pseudo-scalar | 1 |
![]() |
Quantum Field Theory (II) | |
Quantization of Fields |
Differential Geometry
See https://en.wikipedia.org/wiki/Penrose_graphical_notation. Not particularly useful in my homework.
Perturbation Theory
Field Equations and Black Holes
The FRW models are not asymptotically flat.
![]() |
Quantum Field Theory (IV) | |
Renormalization |
Applications of Feynman Diagrams
1PIを剃る。そして断面積を求める。
\(s\)-channel | \(t\)-channel | \(u\)-channel |
---|---|---|
![]() |
![]() |
![]() |
\(\displaystyle \mathcal{M}\propto \frac{1}{s-m_\phi^2}{}\) | \(\displaystyle \mathcal{M}\propto \frac{1}{t-m_\phi^2}{}\) | \(\displaystyle \mathcal{M}\propto \frac{1}{u-m_\phi^2}{}\) |
Images from Mandelstam variables. |
\[ \begin{align*} \sum_s u^s(p) \overline{u}^s(p) &= \unicode{x2215}\kern-.5em {p} + m, \\ \sum_s v^s(p) \overline{v}^s(p) &= \unicode{x2215}\kern-.5em {p} - m. \end{align*} \]
Projection onto left-helicity of \(u\) is onto right-helicity of \(v\), and vice versa.
The question of which regulator to use has no a priori answer in quantum field theory. Often the choice has no effect on the predictions of the theory. When two regulators gives different answers for observable quantities, it is generally because some symmetry (such as the Ward idensity) is being violated by one (or both) of them. In this case we take the symmetry to be fundamental anddemand that it be preserved by the regulator.
- Cutting the diagram:
Working in the COMF, with \(k = (k^0, \vb{0})\), and now we evaluate the integral \[i\delta \mathcal{M} = \frac{\lambda^2}{2} \int \frac{\dd{^4 q}}{(2\pi)^4} \frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \frac{1}{(k/2 + q)^2 - m^2 + i\epsilon}.\]
- Completing the path below, and replacing \[\frac{1}{(k/2 + q)^2 - m^2 + i\epsilon} \rightarrow -2\pi i \delta((k/2 + q)^2 - m^2)\] to pick up the residue at \[q^0 = -\frac{1}{2}k^0 + E_{\vb*{q}},\] we find \[i\delta M = -2\pi i \frac{\lambda^2}{2} \frac{4\pi}{(2\pi)^4} \int_m^\infty \dd{E_{\vb*{q}}} E_{\vb*{q}} \abs{\vb*{q}} \frac{1}{2E_{\vb*{q}}} \frac{1}{k^0 (k^0 - 2E_{\vb*{q}})}.\] The discontinuity is given by replacing the pole with a delta function, i.e. another replacement \[\frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \rightarrow -2\pi i \delta((k/2 - q)^2 - m^2).\] With the result to the first order for the \(\phi^4\)-theory, i.e. \(\mathcal{M}(k) = -\lambda\), we verified to \(\lambda^2\) that (cf. the optical theorem) \[\begin{align*} \operatorname{Disk} \mathcal{M}(k) &= 2i \Im \mathcal{M}(k) \\ &= \frac{i}{2} \int \frac{\dd{^3 p_1}}{(2\pi)^3} \frac{1}{2E_1} \frac{\dd{^3 p_2}}{(2\pi)^3} \frac{1}{2E_2} \abs{\mathcal{M}(k)}^2 (2\pi)^4 \delta^{(4)}(p_1 + p_2 - k). \end{align*}{}\]
- We don't have other contributions yet.
- Feynman diagram:
- Amplitude: \[ \begin{align*} i\mathcal{M} &= \overline{v}^{s'}(p')(-ie\gamma^\mu) u^s(p) \qty(\frac{-ig_{\mu\nu}}{q^2})\overline{u}^r(k)(-ie\gamma^\nu) v^{r'}(k') \\ &= \frac{ie^2}{q^2}\qty({\overline{v}(p')\gamma^\mu u(p)})\qty({\overline{u}(k)\gamma_\mu v(k')}). \end{align*}{} \]
- Amplitude squared and averaged: \[ \begin{align*} \frac{1}{4}\sum_{s,s',r,r'} \abs{\mathcal{M}(s,s' \rightarrow r,r')}^2 &= \frac{e^4}{4q^4} \tr\qty[(\unicode{x2215}\kern-.5em {p}' - m_e)\gamma^\mu (\unicode{x2215}\kern-.5em {p}+m_e)\gamma^\nu] \tr\qty[(\unicode{x2215}\kern-.5em {k} + m_\mu)\gamma_\mu (\unicode{x2215}\kern-.5em {k}' - m_\mu)\gamma_\nu]. \end{align*}{} \]
- Traces evaluated: \[ \frac{1}{4}\sum_{s,s',r,r'} \abs{\mathcal{M}(s,s' \rightarrow r,r')}^2 = \frac{8e^4}{q^4}\qty[(p\cdot k)(p'\cdot k')+(p\cdot k')(p'\cdot k) + m_\mu^2 (p\cdot p')]. \]
- New kinematic variables: \[ \begin{align*} p &= (E,E\hat{\vb*{z}}), \\ p' &= (E, -E\hat{\vb*{z}}), \\ k &= (E,\vb*{k}), \\ k' &= (E,-\vb*{k}). \end{align*}{} \]
- Dot products: \[ \begin{gather*} q^2 = (p+p')^2 = 4E^2, \\ p\cdot p' = 2E^2, \\ p\cdot k = p'\cdot k' = E^2 - E\abs{\vb*{k}} \cos\theta, \\ p\cdot k' = p'\cdot k = E^2 + E\abs{\vb*{k}} \cos\theta. \end{gather*}{} \]
- Amplitude simplified: \[ \frac{1}{4}\sum_{s,s',r,r'} \abs{\mathcal{M}(s,s' \rightarrow r,r')}^2 = e^4 \qty[\qty(1+\frac{m_\mu^2}{E^2}) + \qty(1-\frac{m_\mu^2}{E^2})\cos^2\theta]. \]
- With Mandelstam variables: in massless limit, \[ \frac{1}{4}\sum_{s,s',r,r'} \abs{\mathcal{M}(s,s' \rightarrow r,r')}^2 = \frac{8e^4}{s^2}\qty[\qty(\frac{t}{2})^2 + \qty(\frac{u}{2})^2]. \]
- Differential cross section: \[ \begin{align*} \dv{\sigma}{\Omega} &= \frac{1}{2E_{\mathrm{cm}}^2} \frac{\abs{\vb*{k}}}{16\pi^2 E_{\mathrm{cm}}} \cdot \frac{1}{4}\sum_{s,s',r,r'} \abs{\mathcal{M}(s,s' \rightarrow r,r')}^2 \\ &= \frac{\alpha^2}{4E_{\mathrm{cm}}^2}\sqrt{1-\frac{m_\mu^2}{E^2}}\qty[\qty(1+\frac{m_\mu^2}{E^2}) + \qty(1-\frac{m_\mu^2}{E^2})\cos^2\theta]. \end{align*}{} \] Total cross section: \[ \sigma = \frac{4\pi \alpha^2}{3E_{\mathrm{cm}}^2} \sqrt{1-\frac{m_\mu^2}{E^2}}\qty(1+\frac{1}{2}\frac{m_\mu^2}{E^2}). \]
Relativistic limit: assuming massless. \[ e^-_R e^+_L \rightarrow \mu^-_R \mu^+_L. \]
- Feynman diagram: in the previous example.
- Amplitude: we should apply projections onto specific helicities to \(u\), \(v\), etc. We apply it only to one of the incident particles and one of the outcoming particles, since \[ \overline{v}\gamma^\mu\qty(\frac{1+\gamma^5}{2})u = \overline{v}\gamma^\mu\qty(\frac{1+\gamma^5}{2})^2 u = {v}^\dagger \qty(\frac{1+\gamma^5}{2}) \gamma^0 \gamma^\mu\qty(\frac{1+\gamma^5}{2})u. \] We see the opposite helicities automatically applies to \(u\) and \(v\).
- We hypocritically sum over all spins again, only to exploit the spin sum identities, although we know that some helicities are effectively thrown out.
- Spin sum carried out. Trace Evaluated. \[ \begin{align*} \sum_{s,s'} \abs{\overline{v}(p')\gamma^\mu \qty(\frac{1+\gamma^5}{2})u(p)}^2 &= \tr\qty[\unicode{x2215}\kern-.5em {p}'\gamma^\mu \unicode{x2215}\kern-.5em {p} \gamma^\nu \qty(\frac{1+\gamma^5}{2})] \\ &= 2(p'^\mu p^\nu + p'^\nu p^\mu - g^{\mu\nu}p\cdot p' - i\epsilon^{\alpha\mu\beta\nu} p'_\alpha p_\beta). \\ \sum_{r,r'} \abs{\overline{u}(k)\gamma^\mu \qty(\frac{1+\gamma^5}{2})v(k')}^2 &= 2(k_\mu k'_\nu - k_\nu k'_\mu - g_{\mu\nu} k\cdot k' - i\epsilon_{\rho\mu\sigma\nu} k^\rho k'^\sigma). \end{align*}{} \]
- Using new kinematic variables: \[ \abs{\mathcal{M}}^2 = \qty(1+\cos\theta)^2. \]
- Differential cross section: \[ \begin{align*} \dv{\sigma}{\Omega}\qty(e^-_R e^+_L \rightarrow \mu^-_R \mu^+_L) = \dv{\sigma}{\Omega}\qty(e^-_L e^+_R \rightarrow \mu^-_L \mu^+_R) = \frac{\alpha^2}{4E_{\mathrm{cm}}^2}\qty(1-\cos\theta)^2, \\ \dv{\sigma}{\Omega}\qty(e^-_R e^+_L \rightarrow \mu^-_L \mu^+_R) = \dv{\sigma}{\Omega}\qty(e^-_L e^+_R \rightarrow \mu^-_R \mu^+_L) = \frac{\alpha^2}{4E_{\mathrm{cm}}^2}\qty(1-\cos\theta)^2. \end{align*} \]
Brute-force approach: electrons and muons in relativistic limit,
- Amplitude \[ \mathcal{M} = \frac{e^2}{q^2}\qty(\overline{v}\qty{p'}\gamma^\mu u\qty{p})\qty(\overline{u}\qty(k)\gamma_\mu v\qty(k')). \]
- \(u\) and \(v\) in relativistic limit: \[ \begin{align*} u(p) &= \sqrt{2E}\cdot \frac{1}{2} \begin{pmatrix} (1-\hat{p}\cdot \vb*{\sigma}) \xi \\ (1+\hat{p}\cdot \vb*{\sigma}) \xi \end{pmatrix}, \\ v(p) &= \sqrt{2E}\cdot \frac{1}{2} \begin{pmatrix} (1-\hat{p}\cdot \vb*{\sigma}) \xi \\ -(1+\hat{p}\cdot \vb*{\sigma}) \xi \end{pmatrix}. \end{align*}{} \]
- Electron half by brute-force: \[ \overline{v}(p') \gamma^\mu u(p) = -2E(0,1,i,0). \]
- Muon half by rotation: \[ \overline{u}(k) \gamma^\mu v(k') = -2E(0,\cos\theta,-i,-\sin\theta). \]
- Amplitude \[ \mathcal{M}\qty(e^-_R e^+_L \rightarrow \mu^-_R \mu^+_L) = -e^2(1+\cos\theta). \]
Brute-force approach: electrons in relativistic limit, muons in nonrelativistic limit,
- Amplitude: in the previous example.
- \(p\) in relativistic limit: in the previous example. \(k\) in nonrelativistic limit: \[ u(k) = \sqrt{m}\begin{pmatrix} \xi \\ \xi \end{pmatrix},\quad v(k') = \sqrt{m} \begin{pmatrix} \xi' \\ -\xi' \end{pmatrix}. \]
- Electron half: in the previous example.
- Muon half: \[ \overline{u}(k) \gamma^\mu v(k') = m \begin{pmatrix} \xi^\dagger & \xi^\dagger \end{pmatrix}\begin{pmatrix} \overline{\sigma}^\mu & 0 \\ 0 & \sigma^\mu \end{pmatrix}\begin{pmatrix} \xi' \\ -\xi' \end{pmatrix} = \begin{cases} 0, & \text{if } \mu = 0, \\ -2m\xi^\dagger \sigma^i \xi', & \text{if } \mu = i. \end{cases} \]
- Amplitude: \[ \mathcal{M}(e_R^- e_L^+ \rightarrow \mu^+ \mu^-) = -2e^2 \xi^\dagger \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \xi'. \]
- Muon spins summed over: all four particles have spin \(\uparrow\), \[ \begin{align*} \mathcal{M}^2 &= 4e^4, \\ \dv{\sigma}{\Omega}(e_R^- e_L^+ \rightarrow \mu^+ \mu^-) &= \frac{\alpha^2}{E_{\mathrm{cm}}^2} \frac{\abs{\vb*{k}}}{E}. \end{align*} \]
- Scattering into bound states: see bound states for the expansion of a bound state. \[ \begin{align*} \mathcal{M}(\uparrow \uparrow \rightarrow B) &= \sqrt{2M} \int \frac{\dd{^3 k}}{(2\pi)^3} \tilde{\psi}^*(\vb*{k}) \frac{1}{\sqrt{2m}} \frac{1}{\sqrt{2m}} \mathcal{M}(\uparrow \uparrow \rightarrow \vb*{k}\uparrow, -\vb*{k}\uparrow) \\ &= \sqrt{\frac{2}{M}}(-2e^2)\psi^*(0). \end{align*}{} \]
- For general spin configurations, \[ i\mathcal{M}(\text{something}\rightarrow B) = \sqrt{\frac{2}{M}} \int \frac{\dd{^3 k}}{(2\pi)^3} \tilde{\psi}^*(\vb*{k}) \tr\qty(\frac{\vb*{n}^* \cdot \vb*{\sigma}}{\sqrt{2}}\Gamma\qty(\vb*{k})). \]
- For the current case: \[ \mathcal{M}(e_R^- e_L^+ \rightarrow B) = \sqrt{\frac{2}{M}}(-2e^2)(\vb*{n}^* \cdot \vb*{\epsilon}_+) \psi^*(0). \]
- Polarization states of incidental electrons: \[ \vb*{\epsilon}_+ = \frac{\hat{\vb*{x}} + i\hat{\vb*{y}}}{\sqrt{2}}. \]
- Polarization of outcoming muons: \(\vb*{n}^*\).
- Total cross section: averaged over all possible direction of \(\vb*{n}\), \[ \begin{align*} \sigma(e^+ e^- \rightarrow B) &= \frac{1}{2} \frac{1}{2m} \frac{1}{2m} \int \frac{\dd{^3 K}}{(2\pi)^3} \frac{1}{2E_{\vb*{K}}}(2\pi)^4 \delta^{(4)}(p+p'-K)\cdot \frac{2}{M}(4e^4)\frac{1}{2}\abs{\psi(0)}^2 \\ &= 64\pi^3 \alpha^2 \frac{\abs{\psi(0)}^2}{M^3}\delta(E^2_{\mathrm{cm}} - M^2). \end{align*}{} \]
- Decay of bound states: \[ \begin{align*} \Gamma(B \rightarrow e^+ e^-) &= \frac{1}{2M} \int \dd{\Pi_2} \abs{\mathcal{M}}^2 \\ &= \frac{1}{2M}\int \qty(\frac{1}{8\pi} \frac{\dd{\cos\theta}}{2}) \frac{8e^4}{M}\abs{\psi(0)}^2\qty(\abs{\vb*{n}\cdot \vb*{\epsilon}}^2 + \abs{\vb*{n}\cdot \vb*{\epsilon}^*}^2). \end{align*} \]
- Averaged over all three directions of \(\vb*{n}\): \[ \Gamma(B\rightarrow e^+ e^-) = \frac{16\pi \alpha^2}{3} \frac{\abs{\psi(0)}^2}{M^2}. \]
- Feynman diagram:
- Amplitude: \[ i\mathcal{M} = \frac{ie^2}{q^2} \overline{u}(p'_1)\gamma^\mu u(p_1) \overline{u}(p'_2) \gamma_\mu u(p_2). \]
- Amplitude squared and averaged: \[ \frac{1}{4}\sum_{\text{spins}} \abs{\mathcal{M}}^2 = \frac{e^4}{4q^4}\tr\qty[(\unicode{x2215}\kern-.5em {p}'_1 + m_e)\gamma^\mu (\unicode{x2215}\kern-.5em {p}_1 + m_e)\gamma^\nu]\tr\qty[(\unicode{x2215}\kern-.5em {p}'_2 + m_\mu)\gamma_\mu (\unicode{x2215}\kern-.5em {p}_2 + m_\mu)\gamma_\nu]. \]
- Traces evaluated \[ \frac{1}{4}\sum_{\text{spins}} \abs{\mathcal{M}}^2 = \frac{8e^4}{q^4}\qty[(p_1 \cdot p'_2)(p'_1 \cdot p_2) + (p_1\cdot p_2)(p'_1\cdot p'_2) - m_\mu^2 (p_1\cdot p'_1)]. \]
- New kinematic variables: \[ \begin{align*} p_1 &= (k,k\hat{\vb*{z}}), \\ p_2 &= (E, -k\hat{\vb*{z}}), \\ p'_1 &= (k,\vb*{k}), \\ p'_2 &= (E,-\vb*{k}). \end{align*}{} \]
- Dot products: \[ \begin{gather*} p_1 \cdot p_2 = p'_1 \cdot p'_2 = k(E+k), \\ p'_1 \cdot p_2 = p_1 \cdot p'_2 = k(E+k\cos\theta), \\ p_1 \cdot p'_1 = k^2(1-\cos\theta), \\ q^2 = -2p_1\cdot p'_1 = -2k^2(1-\cos\theta). \end{gather*} \]
- Amplitude simplified: \[ \frac{1}{4}\sum_{\text{spins}} \abs{\mathcal{M}}^2 = \frac{2e^4}{k^2(1-\cos\theta)^2}\qty(\qty(E+k)^2 + \qty(E+k\cos\theta)^2 - m_\mu^2\qty(1-\cos\theta)). \]
- With Mandelstam variables: in massless limit, \[ \frac{1}{4}\sum_{\text{spins}} \abs{\mathcal{M}}^2 = \frac{8e^4}{s^2}\qty[\qty(\frac{s}{2})^2 + \qty(\frac{u}{2})^2]. \]
- Differential cross section: \[ \qty(\dv{\sigma}{\Omega})_{\mathrm{CM}} = \frac{\alpha^2}{2k^2(E+k)^2(1-\cos\theta)^2} \qty(\qty(E+k)^2 + \qty(E+k\cos\theta)^2 - m_\mu^2\qty(1-\cos\theta)). \]
- Note the \(\theta^{-4}\) singularity as \(\theta\) approaches \(0\).
- Feynman diagrams:
\(+\)
- Amplitude: \[ \begin{align*} i\mathcal{M} &= \overline{u}(p')(-ie\gamma^\mu)\epsilon^*_\mu(k') \frac{i( \unicode{x2215}\kern-.5em {p} + \unicode{x2215}\kern-.5em {k} + m )}{(p+k)^2 - m^2}(-ie\gamma^\nu)\epsilon_\nu(k)u(p) + \overline{u}(p')(-ie\gamma^\nu)\epsilon_\nu(k) \frac{i( \unicode{x2215}\kern-.5em {p} - \unicode{x2215}\kern-.5em {k}' + m )}{(p-k')^2 - m^2}(-ie\gamma^\mu)\epsilon^*_\mu(k')u(p) \\ &= -ie^2 \epsilon^*_\mu(k')\epsilon_\nu(k)\overline{u}(p')\qty[\frac{\gamma^\mu \unicode{x2215}\kern-.5em {k} \gamma^\nu + 2\gamma^\mu p^\nu}{2p\cdot k} + \frac{-\gamma^\nu \unicode{x2215}\kern-.5em {k}' \gamma^\mu + 2\gamma^\nu p^\mu}{-2p\cdot k'}]u(p). \end{align*}{} \]
- Amplitude squared and averaged: with the substitution applied, \[ \begin{align*} \frac{1}{4}\sum_{\text{spins}}\abs{\mathcal{M}}^2 &= \frac{e^4}{4}g_{\mu\rho} g_{\nu\sigma} \cdot \tr\qty{ (\unicode{x2215}\kern-.5em {p}' + m)\qty[\frac{\gamma^\mu \unicode{x2215}\kern-.5em {k} \gamma^\nu + 2\gamma^\mu p^\nu}{2p\cdot k} + \frac{-\gamma^\nu \unicode{x2215}\kern-.5em {k}' \gamma^\mu + 2\gamma^\nu p^\mu}{-2p\cdot k'}] (\unicode{x2215}\kern-.5em {p} + m)\qty[\frac{\gamma^\sigma \unicode{x2215}\kern-.5em {k} \gamma^\rho + 2\gamma^\rho p^\sigma}{2p\cdot k} + \frac{-\gamma^\rho \unicode{x2215}\kern-.5em {k}' \gamma^\sigma + 2\gamma^\sigma p^\rho}{-2p\cdot k'}] } \\ &= \frac{e^4}{4}\qty{\frac{\vb{I}}{(2p\cdot k)^2} + \frac{\vb{II}}{(2p\cdot k)(2p\cdot k')} + \frac{\vb{III}}{(2p\cdot k')(2p\cdot k)} + \frac{\vb{IV}}{(2p\cdot k')^2}}. \end{align*}{} \]
- Trace evaluated: \[ \frac{1}{4}\sum_{\text{spins}}\abs{\mathcal{M}}^2 = 2e^4 \qty[\frac{p\cdot k'}{p\cdot k} + \frac{p\cdot k}{p\cdot k'} + 2m^2\qty(\frac{1}{p\cdot k} - \frac{1}{p\cdot k'}) + m^4 \qty(\frac{1}{p\cdot k} - \frac{1}{p\cdot k'})^2]. \]
- New kinematic variables: in the lab frame, \[ \begin{align*} k &= (\omega, \omega \hat{\vb*{z}}), \\ p &= (m, 0), \\ k' &= (\omega', \omega' \sin\theta, 0, \omega' \cos\theta), \\ p' &= (E', \vb*{p}'). \end{align*} \]
- Dot products: \[ p\cdot k = m\omega,\quad p\cdot k' = m\omega'. \]
- Compton's formula: \[ \omega' = \frac{\omega}{\displaystyle 1 + \frac{\omega}{m}(1-\cos\theta)}. \]
- Phase space integral: \[ \begin{align*} \int \dd{\Pi_2} &= \int \frac{\dd{^3 k}}{(2\pi)^3} \frac{1}{2\omega'} \frac{\dd{^3 p'}}{(2\pi)^3} \frac{1}{2E'} (2\pi)^4 \delta^{(4)}(k'+p'-k-p) \\ &= \frac{1}{8\pi} \int \dd{\cos\theta} \frac{(\omega')^2}{\omega m}. \end{align*}{} \] Differential cross section: \[ \begin{align*} \dv{\sigma}{\cos\theta} &= \frac{1}{2\omega} \frac{1}{2m} \cdot \frac{1}{8\pi} \frac{(\omega')^2}{\omega m}\cdot \qty(\frac{1}{4} \sum_{\text{spins}} \abs{\mathcal{M}}^2) \\ &= \frac{\pi \alpha^2}{m^2}\qty(\frac{\omega'}{\omega})^2 \qty[\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta]. \end{align*}{} \]
High-energy behavior:
- New kinematic variables: in the center-of-mass frame, \[ \begin{align*} k &= (\omega, \omega \hat{\vb*{z}}), \\ p &= (E, -\omega \hat{\vb*{z}}), \\ k' &= (\omega, \omega \sin\theta, 0, \omega\cos\theta), \\ p' &= (E', -\omega \sin\theta, 0, -\omega\cos\theta). \end{align*}{} \]
- Amplitude simplified: for \(E\gg m\) and \(\theta\approx \pi\), \[ \frac{1}{4}\sum_{\text{spins}}\abs{\mathcal{M}}^2 = 2e^4\cdot \frac{E + \omega}{E + \omega \cos\theta}. \]
- Differential cross section: \[ \begin{align*} \dv{\sigma}{\cos\theta} &= \frac{1}{2}\cdot \frac{1}{2E} \cdot \frac{1}{2\omega} \cdot \frac{\omega}{(2\pi)4(E+\omega)} \cdot \frac{2e^4 (E+\omega)}{E+\omega\cos\theta} \\ &\approx \frac{2\pi \alpha^2}{2m^2 + s(1+\cos\theta)}. \end{align*}{} \] Total cross section \[ \sigma \approx \frac{2\pi\alpha^2}{s}\log\qty(\frac{s}{m^2}). \]
- \(u\)-channel diagram:
- Invariant matrix: \[ i\mathcal{M} = ie^2 \epsilon_\mu(k)\epsilon^*_\nu(k') \overline{u}(p')\gamma^\mu \frac{\unicode{x2215}\kern-.5em {p} - \unicode{x2215}\kern-.5em {k}' + m}{(p-k')^2 - m^2}\gamma^\nu u(p). \]
- \[ \chi = \pi - \theta. \]
- Region: \[ \frac{m}{\omega} \ll \chi \ll 1. \] Contribution from \[ (\unicode{x2215}\kern-.5em {p} - \unicode{x2215}\kern-.5em {k}'). \]
- Initial electron right-handed: final electron right-handed, initial photon right-handed, final photon right-handed, \[ \begin{align*} \mathcal{M}(e^-_R \gamma_R \rightarrow e^-_R \gamma_R) &= -e^2 \epsilon_\mu(k) \epsilon^*_\nu(k')u^\dagger_R(p')\sigma^\mu \frac{\overline{\sigma}\cdot (p-k')}{-(\omega^2 \chi^2 + m^2)}\sigma^\nu u_R(p) &\approx \frac{4e^2\chi}{\chi^2 + m^2/\omega^2}. \end{align*}{} \]
- Equal contribution from left-handed initial electron.
- Region: direct backward scattering, \[ \chi = 0. \] Contribution from \(m\).
- \[ \mathcal{M}(e^-_R \gamma_L \rightarrow e^-_L \gamma_R) = \frac{4e^2 m/\omega}{\chi^2 + m^2/\omega^2}. \]
- Equal contribution from left-handed initial electron.
- Differential cross section: \[ \begin{align*} \dv{\sigma}{\cos\theta} &= \frac{1}{2} \frac{1}{2E} \frac{1}{2\omega} \frac{\omega}{(2\pi)4(E+\omega)}\qty[\mathcal{M}(e^-_R \gamma_R \rightarrow e^-_R \gamma_R) + \mathcal{M}(e^-_R \gamma_L \rightarrow e^-_L \gamma_R)] \\ &= \frac{4\pi\alpha^2}{s(\chi^2 + 4m^2/s)}. \end{align*}{} \]
- Feynman diagrams:
\(+\)
- Making replacements from the Compton scattering: \[ p \rightarrow p_1, \quad p' \rightarrow -p_2,\quad k\rightarrow -k_1,\quad k'\rightarrow -k_2. \]
- Amplitude squared and averaged, and trace evaluated: \[ \frac{1}{4}\sum_{\text{spins}}\abs{\mathcal{M}}^2 = -2e^4\qty[\frac{p_1 \cdot k_2}{p_1 \cdot k_1} + \frac{p_1 \cdot k_1}{p_1\cdot k_2} + 2m^2\qty(\frac{1}{p_1\cdot k_1} + \frac{1}{p_1 \cdot k_2}) - m^4 \qty(\frac{1}{p_1 \cdot k_1} + \frac{1}{p_1 \cdot k_2})^2]. \]
- Overall minus sign from the crossing relation and should be removed.
- New kinematic variables: \[ \begin{align*} p_1 &= (E,p\hat{\vb*{z}}), \\ p_2 &= (E,-p\hat{\vb*{z}}), \\ k_1 &= (E,E\sin\theta, 0, E\cos\theta), \\ k_2 &= (E, -E\sin\theta, 0, -E\cos\theta). \end{align*}{} \]
- Differential cross section: \[ \dv{\sigma}{\cos\theta} = \frac{2\pi\alpha^2}{s}\qty(\frac{E}{p})\qty[\frac{E^2 + p^2 \cos^2\theta}{m^2 + p^2\sin^2\theta} + \frac{2m^2}{m^2 + p^2\sin^2\theta} - \frac{2m^4}{(m^2 + p^2\sin^2\theta)^2}]. \]
\(=\)
\(+\)
\(+\)
\(+ \cdots\)
The amplitude of electron scattering from an electric field is given by \[ i\mathcal{M} = -ie F_1(0)\tilde{\phi}(\vb*{q}) \cdot 2m \xi'^\dagger \xi \] under non-relativistic limit for slowly varying field, which indicate a potential given by \[V(\vb*{x}) = eF_1(0) \phi(\vb*{x}).\]
The amplitude of electron scattering in an magnetic field is given by \[ \begin{align*} i\mathcal{M} &= +ie\qty[{ \overline{u}(p') \qty({ \gamma^i F_1 + \frac{i\sigma^{i\nu} q_\nu}{2m} F_2 }) u(p) }] \tilde{A}^i_{\mathrm{cl}}(\vb*{q}) &= -i(2m) \cdot e \xi'^\dagger \qty({ \frac{-1}{2m} \sigma^k \qty[F_1(0) + F_2(0)] }) \xi \tilde{B}^k(\vb*{q}). \end{align*} \] This is equivalent to the potential \[V(\vb*{x}) = -\langle \vb*{\mu} \rangle \cdot \vb*{B}(\vb*{x}),\] where \[ \begin{align*} \langle \vb*{\mu} \rangle &= \frac{e}{m} \qty[F_1(0) + F_2(0)] \xi'^\dagger \frac{\vb*{\sigma}}{2} \xi; \\ \vb*{\mu} &= g\qty(\frac{e}{2m}) \vb*{S}; \\ g &= 2\qty[F_1(0) + F_2(0)] = 2 + 2F_2(0). \end{align*} \]
- Tree-level correction plus loop: \[\Gamma^\mu = \gamma^\mu + \delta \Gamma^\mu\] where \[ \overline{u}(p') \delta \Gamma^\mu(p',p) u(p) = 2ie^2 \int \frac{\dd{^4 k}}{(2\pi)^4} \frac{\overline{u}(p')\qty[ \unicode{x2215}\kern-.5em {k} \gamma^\mu \unicode{x2215}\kern-.5em {k} + m^2\gamma^\mu - 2m(k+k') ]u(p)}{((k-p)^2 + i\epsilon)(k'^2 - m^2 + i\epsilon)(k^2 - m^2 + i\epsilon)}. \]
- Feynman parameters: \[\frac{1}{((k-p)^2 + i\epsilon)(k'^2 - m^2 + i\epsilon)(k^2 - m^2 + i\epsilon)} = \int_0^1 \dd{x} \dd{y} \dd{z} \delta(x+y+z-1) \frac{2}{D^3}.\]
- Completing the square: \[D = l^2 - \Delta + i\epsilon\] and \[\Delta = -xyq^2 + (1-z)^2 m^2.\]
- Simplifying the numerator: \[\overline{u}(p') \delta \Gamma^\mu(p',p) u(p) = 2ie^2 \int \frac{\dd{^4 l}}{(2\pi)^4} \int_0^1 \dd{x} \dd{y} \dd{z} \delta(x+y+z-1) \frac{2}{D^3} \overline{u}(p')\qty[\mathrm{Numerator}] u(p)\] where \[[\mathrm{Numerator}] = \gamma^\mu \cdot \qty({-\frac{1}{2} l^2 + (1-x)(1-y) q^2 + (1-4z+z^2)m^2 }) + \frac{i\sigma^{\mu\nu}q_\nu}{2m}(2m^2 z(1-z)).\]
- Regularizing the integral: introduce a large \(\Lambda\) and replace the photon propagator \[\frac{1}{(k-p)^2 + i\epsilon} \rightarrow \frac{1}{(k-p)^2 + i\epsilon} - \frac{1}{(k-p)^2 - \Lambda^2 + i\epsilon}.\] For the \(\Lambda\) term, the denominator is altered by \[\Delta \rightarrow \Delta_\Lambda = -xyq^2 + (1-z)^2 m^2 + z\Lambda^2.\] This replacement introduces a correction \[\int \frac{\dd{^4 l}}{(2\pi)^4} \qty({ \frac{l^2}{[l^2 - \Delta]^3} - \frac{l^2}{[l^2 - \Delta_\Lambda]^3} }) = \frac{i}{(4\pi)^2} \log \qty(\frac{\Delta_\Lambda}{\Delta}) \approx \frac{i}{(4\pi)^2} \log \qty(\frac{z\Lambda^2}{\Delta}).\] We are counting on this correction to fix the divergence of the \(l^2\)-term in the numerator.
- Applying Wick rotation, we obtain \[\overline{u}(p') \delta \Gamma^\mu(p',p) u(p) = \frac{\alpha}{2\pi} \int_0^1 \dd{x}\dd{y}\dd{z} \delta(x+y+z-1) \overline{u}(p') \qty(\mathrm{Mess}) u(p)\] where \[ (\mathrm{Mess}) = \gamma^\mu \qty[{ \log \frac{z\Lambda^2}{\Delta} + \frac{1}{\Delta}\qty({ (1-x)(1-y)q^2 + (1-4z+z^2)m^2 }) }] + \frac{i\sigma^{\mu\nu} q_\nu}{2m}\qty[{ \frac{1}{\Delta} 2m^2 z(1-z) }]. \]
A few notes are in order:
\(+\)
- Free propagator \[\frac{i(\unicode{x2215}\kern-.5em {p} + m_0)}{p^2 - m_0^2 + i\epsilon}\] plus one-loop correction \[\frac{i(\unicode{x2215}\kern-.5em {p} + m_0)}{p^2 - m_0^2}[-i\Sigma_2(p)]\frac{i(\unicode{x2215}\kern-.5em {p} + m_0)}{p^2 - m_0^2 + i\epsilon}\] where \[-i\Sigma_2(p) = (-ie)^2 \int \frac{\dd{^4 k}}{(2\pi)^4} \gamma^\mu \frac{i(\unicode{x2215}\kern-.5em {k} + m_0)}{k^2 - m_0^2 + i\epsilon} \gamma_\mu \frac{-i}{(p-k)^2 - \mu^2 + i\epsilon}.\]
- Feynman parameters: \[\frac{1}{k_2 - m_0^2 + i\epsilon} \frac{1}{(p-k)^2 - \mu^2 + i\epsilon} = \int_0^1 \dd{x} \frac{1}{D^2}.\]
- Completing the square: \[D = l^2 - \Delta + i\epsilon\] and \[\Delta = -x(1-x) p^2 + x\mu^2 + (1-x) m_0^2.\]
- Simplifying the numerator: \[-i\Sigma_2(p) = -e^2 \int_0^1 \dd{x} \int \frac{\dd{^4 l}}{(2\pi)^4} \frac{-2 x\unicode{x2215}\kern-.5em {p} + 4m_0}{D^2}.\]
- Regularizing the integral: introduce a large \(\Lambda\) and replace the photon propagator \[\frac{1}{(p-k)^2 + i\epsilon} \rightarrow \frac{1}{(p-k)^2 + i\epsilon} - \frac{1}{(k-p)^2 - \Lambda^2 + i\epsilon}.\] For the \(\Lambda\) term, the denominator is altered by \[\Delta \rightarrow \Delta_\Lambda = -x(1-x)p^2 + x\mu^2 + (1-x)m_0^2.\] This replacement introduces a correction which gives \[\frac{i}{(4\pi)^2} \int_0^\infty \dd{l_E^2} \qty({ \frac{l_E^2}{[l_E^2 + \Delta]^2} - \frac{l_E^2}{[l_E^2 + \Delta_\Lambda]^2} }) = \frac{i}{(4\pi)^2} \log\qty(\frac{\Delta_\Lambda}{\Delta}).\]
- Applying Wick rotation, we obtain (with \(\Lambda \rightarrow \infty\)) \[\Sigma_2(p) = \frac{\alpha}{2\pi} \int_0^1 \dd{x} (2m_0 - x\unicode{x2215}\kern-.5em {p}) \log \qty(\frac{x\Lambda^2}{(1-x) m_0^2 + x\mu^2 - x(1-x)p^2}).\]
- One-loop correction \[\begin{align*}i\Pi^{\mu\nu}_2(q) &= -(-ie)^2 \int \frac{\dd{^4 k}}{(2\pi)^4} \tr\qty[{ \gamma^\mu \frac{i(\unicode{x2215}\kern-.5em {k} + m)}{k^2 - m^2} \gamma^\nu \frac{i(\unicode{x2215}\kern-.5em {k} + \unicode{x2215}\kern-.5em {q} + m)}{(k+q)^2 - m^2} }] \\ &= -4e^2 \int \frac{\dd{^4 k}}{(2\pi)^4} \frac{k^\mu (k+q)^\nu + k^\nu (k+q)^\mu - g^{\mu\nu}(k\cdot (k+q) - m^2)}{(k^2 - m^2)((k+q)^2 - m^2)}. \end{align*}{}\]
- Feynman parameters: \[\frac{1}{(k^2 - m^2)((k+q)^2 - m^2)} = \int_0^1 \dd{x} \frac{1}{D^2}.\]
- Completing the square: \[D = l^2 - \Delta + i\epsilon\] and \[\Delta = m^2 - x(1-x) q^2.\]
- Simplifying the numerator: \[\mathrm{Numerator} = 2l^\mu l^\nu - g^{\mu\nu}l^2 - 2x(1-x) q^\mu q^\nu + g^{\mu\nu} \qty(m^2 + x(1-x) q^2) + (\mathrm{terms\ linear\ in\ }l).\]
- Applying Wick rotation, \[i\Pi^{\mu\nu}_2(q) = -4ie^2 \int_0^1 \dd{x} \int \frac{\dd{^4 l_E}}{(2\pi)^4} \frac{-(1/2)g^{\mu\nu} l_E^2 + g^{\mu\nu} l_E^2 - 2x(1-x)q^\mu q^\nu + g^{\mu\nu}(m^2 + x(1-x) q^2)}{(l_E^2 + \Delta)^2}.\]
- Regularizing the integral: using dimensional regularization. \[ \begin{align*} i\Pi_2^{\mu\nu}(q) &= -4ie^2 \int_0^1 \dd{x} \frac{1}{(4\pi)^{d/2}} \frac{\Gamma(2-d/2)}{\Delta^{2-d/2}} \times \qty[{ g^{\mu\nu}(-m^2 + x(1-x) q^2) + g^{\mu\nu}(m^2 + x(1-x)q^2) - 2x(1-x)q^\mu q^\nu }] \\ &= (q^2 g^{\mu\nu} - q^\mu q^\nu) \cdot i\Pi_2(q^2) \end{align*} \] where \[ \begin{align*} \Pi_2(q^2) &= \frac{-8e^2}{(4\pi)^{d/2}} \int_0^1 \dd{x} x(1-x) \frac{\Gamma(2-d/2)}{\Delta^{2-d/2}} \\ &\xrightarrow{d\rightarrow 4} -\frac{2\alpha}{\pi} \int_0^1 \dd{x} x(1-x) \qty(\frac{2}{\epsilon} - \log \Delta - \gamma + \log(4\pi)). \end{align*} \]
- Ward identity violated without regularization.
Uehling potential: recalculate the tree level \[e^- + e^- \rightarrow e^- + e^-\] we find, for \(r\gg 1/m\), \[ \begin{align*} V(\vb*{x}) &= \int \frac{\dd{^3 q}}{(2\pi)^3} e^{i\vb*{q} \cdot \vb*{x}} \frac{-e^2}{\abs{\vb*{q}}^2 [1 - \hat{\Pi}_2(-\abs{\vb*{q}}^2)]} \\ &\approx -\frac{\alpha}{r}\qty(1 + \frac{\alpha}{4\sqrt{\pi}} \frac{e^{-2mr}}{(mr)^{3/2}}). \end{align*} \] However, at small distance, or \(-q^2 \gg m^2\), \[\alpha_{\mathrm{eff}}(q^2) = \frac{\alpha}{\displaystyle 1-\frac{\alpha}{3\pi} \log\qty(\frac{-q^2}{Am^2})}\] where \(A = \exp(5/3).\)
See 费曼图展开是渐近展开在物理上意味着什么?.
![]() |
Index | |
Index |
Strongly Correlated Systems
\[ \delta(\omega - \omega_0) = -\frac{1}{\pi} \lim_{\epsilon\rightarrow 0} \Im \frac{1}{\omega - \omega_0 + i\epsilon}. \]
\(U=0\), no correlation, \[ \rho_\sigma(\omega) = D(\omega). \]
\(U\ge \Delta\), \(U \gg \abs{E_{\vb*{k}} - T_0}\), strong correlation, \[\begin{align*} G^{\sigma}_{\vb*{k}}(\omega) &\approx \qty{\frac{1-\langle n_{-\sigma}\rangle}{\omega - T_0 - (E_{\vb*{k}} - T_0)(1-\langle n_{-\sigma}\rangle)} + \frac{\langle n_{-\sigma}\rangle}{\omega - T_0 - U - (E_{\vb*{k}} - T_0)\langle n_{-\sigma} \rangle}}. \\ \rho_\sigma(\omega) &= \frac{1}{N} \sum_{\vb*{k}} \begin{cases} (1-\langle n_{-\sigma}\rangle) \delta[\omega - T_0 - (E_{\vb*{k}} - T_0)(1 - \langle n_{-\sigma}\rangle)] \\ \mbox{} + \langle n_{-\sigma} \rangle \delta[\omega - T_0 - U - (E_{\vb*{k}} - T_0)\langle n_{-\sigma} \rangle]. \end{cases} \end{align*}{}\]
![]() |
Quantum Field Theory (I) | |
Mathematical Prerequisites |
Quantization of Fields
波動、真空に存在する特殊無摂動量子場。 対処法1、\(a_{\vb*{p}}\)を以てこれを消滅する。 対処法2、経路積分して、伝播函数を求める。
If under \[ \phi(x) \rightarrow \phi'(x) = \phi(x) + \alpha\Delta\phi(x), \] the Lagrangian undergoes \[ \mathcal{L}(x) \rightarrow \mathcal{L}(x) + \alpha\partial_\mu \mathcal{J}^\mu(x), \] then \[ \partial_\mu j^\mu(x) = 0 \] for \[ \color{orange} j^\mu(x) = \pdv{\mathcal{L}}{(\partial_\mu \phi)}\Delta \phi - \mathcal{J}^\mu. \]
For \(H_0 \propto m^2\varphi^2\), we turn \(m^2\) into \[ m^2 \rightarrow m^2 - i\epsilon. \]
\[ \color{orange} \varphi(x) = \int \frac{\dd{^3 p}}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vb*{p}}}}\qty(a_{\vb*{p}}e^{-ip\cdot x} + a^\dagger_{\vb*{p}} e^{ip\cdot x}). \]
\(\psi_\alpha(x)\ket{0}\) contains a position as position \(x\), while \(\overline{\psi}_\alpha\ket{0}\) contains one electron.
The \(\operatorname{T}\) operator has a minus sign under reversed order: \[ \color{red} T\psi(x) \overline{\psi}(y) = \begin{cases} \psi(x) \overline{\psi}(y), & \text{if } x^0 > y^0, \\ -\overline{\psi}(y) {\psi}(x), & \text{if } x^0 < y^0. \\ \end{cases} \]
\[ \color{orange} \psi(x) \color{orange} = \int \frac{\dd{^3 p}}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vb*{p}}}} \sum_s \qty(a^s_{\vb*{p}} u^s(p) e^{-ip\cdot x} + b^{s\dagger}_{\vb*{p}} v^s(p) e^{ip\cdot x}), \]
To obtain the correct Feynman propagator, we should follow the rule of proximity when taking derivatives.
\[ \color{orange} A_\mu(x) = \int \frac{\dd{^3 p}}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vb*{p}}}} \sum_{r=0}^3 \qty{a_{\vb*{p}}^r \epsilon^r_\mu(p) e^{-ip\cdot x} + a^{r\dagger}_{\vb*{p}} \epsilon^{r*}_\mu(p) e^{ip\cdot x}}. \]
See On the Quantization of the Gravitational Field.
\[ \color{orange} h_{\rho\sigma}(x) = \frac{1}{(2\pi)^{3/2}} \int_{X_0^+} h_{\rho\sigma}(p)e^{ip\cdot x} \dd{\alpha_0^+(p)} + \frac{1}{(2\pi)^{3/2}} \int_{X_0^+} h^\dagger_{\rho\sigma}(p) e^{-ip\cdot x} \dd{\alpha_0^+(p)}. \]
\(\mathcal{L}\) is invariant under:
\(\mathcal{L}\) is invariant under:
\(C\) | \(P\) | \(T\) | \(CPT\) | |
---|---|---|---|---|
\(\overline{\psi}\psi\) | \(+1\) | \(+1\) | \(+1\) | \(+1\) |
\(\overline{\psi}\gamma^5\psi\) | \(-1\) | \(-1\) | \(+1\) | \(+1\) |
\(\overline{\psi}\gamma^\mu\psi\) | \((-1)^\mu\) | \((-1)^\mu\) | \(-1\) | \(-1\) |
\(\overline{\psi}\gamma^\mu \gamma^5\psi\) | \(-(-1)^\mu\) | \((-1)^\mu\) | \(+1\) | \(-1\) |
\(\overline{\psi}\sigma^{\mu\nu}\psi\) | \((-1)^\mu(-1)^\nu\) | \(-(-1)^\mu(-1)^\nu\) | \(-1\) | \(+1\) |
\(\partial_\mu\) | \((-1)^\mu\) | \(-(-1)^\mu\) | \(+1\) | \(-1\) |
- A general two-body system with equal constituent: \[ \begin{align*} \vb*{R} &= \frac{1}{2}(\vb*{r}_1 + \vb*{r}_2) & \leftrightarrow \vb*{K} = \vb*{k}_1 + \vb*{k}_2, \\ \vb*{r} &= \vb*{r}_1 - \vb*{r}_2 & \leftrightarrow \vb*{k} = \frac{1}{2}(\vb*{k}_1 - \vb*{k}_2). \end{align*} \]
- In COMF: \(S=1\), \(M=1\), nonrelativistic limit, \[ \ket{B} = \sqrt{2M} \int \frac{\dd{^3 k}}{(2\pi)^3} \tilde{\psi}(\vb*{k}) \frac{1}{\sqrt{2m}} \frac{1}{\sqrt{2m}} \ket{\vb*{k}\uparrow, -\vb*{k}\uparrow}. \]
- \[ \tilde{\psi}(\vb*{k}) = \int \dd{^3 x} e^{i\vb*{k}\cdot \vb*{r}} \psi(\vb*{r}). \]
![]() |
Quantum Field Theory (III) | |
Feynman Diagrams |
Applications of Second Quantization
The heat capacity may be given by \[ C_V = T\qty(\pdv{S}{T})_V. \] The contribution from electrons may be given by \[ \delta S = \frac{V}{T} \int \dd{\epsilon_{\vb*{p}}} \delta f_{\vb*{p}} N(\epsilon_{\vb*{p}})(\epsilon_{\vb*{p}} - \mu), \] where the DoS of electrons is given by \[ N(\epsilon_{\vb*{p}}) = \frac{p^2}{\pi^2 \hbar^3} \dv{p}{\epsilon_{\vb*{p}}}. \] The integral of \(\delta S\) may be evaluated using the Sommerfeld expansion.
The Hamiltonian is given by \[ \hat{H}_e = \sum_{\nu\lambda} \bra{\nu} \hat{h}(1) \ket{\lambda} a_\nu^\dagger a_\lambda + \frac{1}{2} \sum_{\nu\lambda\alpha\beta} \bra{\nu\lambda} \frac{e^2}{\abs{\vb*{r}_1 - \vb*{r}_2}}\ket{\alpha\beta} a_\nu^\dagger a_\lambda^\dagger a_\beta a_\alpha, \] where \[ \hat{h}(1) = \frac{\hat{\vb*{p}}_1^2}{2m} + \hat{V}_{\mathrm{ion}}(\vb*{r}_1). \]
The ket of non-interacting electron gas is given by \[ \ket{\psi_0} = \ket{\vb*{p}_0 \uparrow, \vb*{p}_0\downarrow, \cdots, \vb*{p}_{\mathrm{F}} \uparrow, \vb*{p}_{\mathrm{F}} \downarrow} = a^\dagger_{\vb*{p}_0\uparrow} a^\dagger_{\vb*{p}_0\downarrow} \cdots a^\dagger_{\vb*{p}_{\mathrm{F}} \uparrow} a^\dagger_{\vb*{p}_{\mathrm{F}} \downarrow} \ket{0}. \]
Now we evaluate the expectation value of \(h_1\).
The Hamiltonian may be written in second-quantized form as \begin{align*} \hat{H}_1 &= \sum_\sigma \int \dd{\vb*{r}} \qty[-\frac{\hbar^2}{2m} \psi^\dagger_\sigma (\vb*{r}) \laplacian \psi_\sigma(\vb*{r}) + \psi^\dagger_\sigma(\vb*{r}) V_{\mathrm{ion}}(\vb*{r}) \psi_\sigma(\vb*{r})] \\ &= \sum_\sigma \int \dd{\vb*{r}} \qty[ \frac{\hbar^2}{2m} \abs{\grad \psi_\sigma}^2 + \hat{n}_\sigma(\vb*{r}) \psi_{\mathrm{ion}}(\vb*{r}) ]. \end{align*} This could also be written in the orbital basis as \begin{align*} \langle \hat{H}_1 \rangle &= \sum_\nu \bra{\nu}\hat{h}(1)\ket{\nu} n_\nu \\ &= \sum_{\nu \mathrm{\ (occ.)}} \int \qty[\frac{\hbar^2}{2m}\abs{\grad \phi_\nu}^2 + \phi_\nu^*(\vb*{r}) V_{\mathrm{ion}}(\vb*{r})\phi_\nu(\vb*{r})] \dd{\vb*{r}}. \end{align*}
The two-body part of \(H\) is given by \begin{align*} \langle \hat{H}_2 \rangle &= \bra{\psi_0} \hat{V}_{\mathrm{ee}}\ket{\psi_0} \\ &= \frac{1}{2} \sum_{\alpha,\beta,\nu,\lambda} \bra{\nu}\bra{\lambda} \frac{e^2}{\abs{\vb*{r}_1 - \vb*{r}_2}} \ket{\alpha}\ket{\beta} \langle a^\dagger_\nu a^\dagger_\lambda a_\beta a_\alpha \rangle \\ &= \frac{}{2} \sum_{\nu,\lambda} \bra{\nu}\bra{\lambda} \frac{e^2}{\abs{\vb*{r}_1 - \vb*{r}_2}} \ket{\nu}\ket{\lambda} n_\lambda n_\nu - \frac{1}{2} \sum_{\nu,\lambda} \bra{\nu}\bra{\lambda} \frac{e^2}{\abs{\vb*{r}_1 - \vb*{r}_2}} \ket{\lambda}\ket{\nu} n_\lambda n_\nu \\ &= \frac{1}{2} \sum_{\nu,\lambda \mathrm{\ (occ.)}} (U_{\nu\lambda} - \delta_{\sigma_\nu \sigma_\lambda}J_{\nu\lambda}). \end{align*} Where we have used Wick's rules and found \[ \langle a^\dagger_\nu a^\dagger_\lambda a_\beta a_\alpha \rangle = (\delta_{\nu\alpha}\delta_{\lambda\beta} - \delta_{\nu\beta}\delta_{\lambda\alpha}) \langle \hat{n}_\alpha \rangle \langle \hat{n}_\beta \rangle. \]
The total Hatree-Fock energy is given by \[ E_{\mathrm{HF}} = \langle \hat{H}_1 \rangle + \frac{1}{2} \sum_{\lambda,\nu \mathrm{\ (occ.)}} [U_{\nu\lambda} - U_{\nu\lambda}]. \] To obtain the orbitals, we minimize the ground state energy with respect to the \(\phi\)'s, under the condition that \(\phi\)'s are normalized. We introduce a Lagrange multiplier \(\epsilon_\nu\) and write down the Euler-Lagrange equation \[ \frac{\delta E_{\mathrm{HF}}}{\delta \phi_\nu^*(\vb*{r})} = \epsilon_\nu \frac{\delta}{\delta \phi^*_\nu(\vb*{r})} \int \dd{\vb*{r}'} \abs{\phi_\nu(\vb*{r})}^2, \] which yields the Hatree-Fock equations \begin{align*} \qty[-\frac{\hbar^2}{2m}\grad^2 + \hat{V}_{\mathrm{ion}}(\vb*{r}) + \sum_\lambda \int \dd{\vb*{r}'} n_\lambda(\vb*{r}')\frac{e^2}{\abs{\vb*{r} - \vb*{r}'}}]\phi_\nu(\vb*{r}) & \\ -\sum_\lambda \int \dd{\vb*{r}'} \phi_\lambda^*(\vb*{r}') \phi_\nu(\vb*{r}') \frac{e^2}{\abs{\vb*{r} - \vb*{r}'}} \phi_\lambda(\vb*{r}) &= \epsilon_\nu \phi_\nu(\vb*{r}). \end{align*} Therefore we find \[ \epsilon_\nu = \bra{\nu} h_1 \ket{\nu} + \sum_{\lambda \mathrm{\ occ.}} (U_{\nu\lambda} - J_{\nu\lambda}), \] and \[ E_{\mathrm{HF}} = \sum_{\nu \mathrm{\ (occ.)}} \epsilon_\nu - \frac{1}{2} \sum_{\lambda,\nu \mathrm{\ (occ.)}} (U_{\nu\lambda} - J_{\nu\lambda}). \]
The Hatree-Fock energy \(\epsilon_\nu\) is the energy required to add a particle in the previously unoccupied orbital \(\nu\).
We evaluated the energy of uniform electron gas under the following prescription:
Therefore, the energy of a particle in a momentum state \(\vb*{p}\) is given by \[ \epsilon(\vb*{p}) = \frac{p^2}{2m} + \epsilon_{\mathrm{exch}}(\vb*{p}) \] where \begin{align*} \epsilon_{\mathrm{exch}}(\vb*{p}) &= - e^2 \int_0^{p_{\mathrm{F}}} \frac{\dd{\vb*{p}'}}{(2\pi\hbar)^3} \int \dd{\vb*{x}} \frac{e^{i(\vb*{p} - \vb*{p}')\cdot \vb*{x}/\hbar}}{\abs{\vb*{x}}} \\ &= -\frac{e^2p_{\mathrm{F}}}{\pi\hbar} \qty(1 + \frac{(p_{\mathrm{F}}^2 - p^2)}{2pp_F}\ln \abs{\frac{p+p_{\mathrm{F}}}{p - p_{\mathrm{F}}}}). \end{align*} The total Hatree-Fock energy is therefore given by \begin{align*} \color{orange}E_{\mathrm{HF}} &= 2V\int_0^{p_{\mathrm{F}}} \frac{\dd{\vb*{p}'}}{(2\pi\hbar)^3} \qty(\frac{p^2}{2m} + \frac{1}{2}\epsilon_{\mathrm{exch}}\qty(\vb*{p})) \\ &= \frac{Ne^2}{2a_0}\qty[\frac{3}{5}\qty(\frac{p_{\mathrm{F}}a_0}{\hbar})^2 - \frac{3}{2\pi}\qty(\frac{p_{\mathrm{F}}a_0}{a_0})] \\ &\color{orange}= N\qty(\frac{2.21}{r_{\mathrm{s}}^2} - \frac{0.916}{r_{\mathrm{s}}}) \operatorname{Ry}, \end{align*} where \[ r_{\mathrm{s}} = \qty(\frac{9\pi}{4})^{1/3} \frac{e^2}{\hbar v_{\mathrm{F}}}. \]
Introducing \[ F(x) = \frac{1}{2} + \frac{1-x^2}{4x} \ln \abs{\frac{1+x}{1-x}} \] we find \[ \frac{\epsilon(\vb*{p})}{\epsilon_{\mathrm{F}}^0} = x^2 - 0.663 r_{\mathrm{s}} F(x), \] where \[ x = \frac{p}{p_{\mathrm{F}}}. \]
The exchange energy is negative because electrons of like spin avoid one another.
The DoS evaluates to \[ N(\epsilon) = \frac{p_{\mathrm{F}}^2}{\pi^2 \hbar^3} \pdv{p}{\epsilon} \approx \frac{mp_{\mathrm{F}}/\pi^2 \hbar^2}{1 - (me^2/\pi\hbar p_{\mathrm{F}})\ln\abs{(p-p_{\mathrm{F}})/2p_{\mathrm{F}}}}. \] With \(p^2/2m - p_{\mathrm{F}}^2/2m \approx T\) we find \[ C_V \sim \frac{T}{\ln T}, \] which deviates from the (correct) linear dependence, because the screening of Coulomb potential was not taken into account.
Hatree-Fock approximation overestimate the energy bandwidth to \[ \Delta = \epsilon(x=1) - \epsilon(x=0) = \epsilon_{\mathrm{F}}^0(1+0.331r_{\mathrm{s}}), \] while in the free-electron model \(\Delta = \epsilon_{\mathrm{F}}^0\) fits well with experimental data.
The cohesive energy is defined by \[ \epsilon_{\mathrm{coh}} = (\epsilon/\mathrm{atom})_{\mathrm{matal}} - (\epsilon/\mathrm{atom})_{\mathrm{free}}. \] We write the cohesive energy as \[ \epsilon_{\mathrm{coh}} = \epsilon_0 - \epsilon_{\mathrm{atom}} + \epsilon_{\mathrm{kin}} + \epsilon_{\mathrm{coul}}. \] Using the Wigner-Seitz method for alkali metals, we find the following:
Using perturbation theory we add the correlation energy \begin{align*} \epsilon_{\mathrm{corr}} &\approx \begin{cases} \displaystyle -\frac{0.884}{r_{\mathrm{s}}} \operatorname{Ry},& r_{\mathrm{s}} \rightarrow \infty, \\ \displaystyle 0.062\ln r_{\mathrm{s}} - 0.096, & r_{\mathrm{s}} \rightarrow 0, \end{cases} \end{align*} which yields more accurate results.
The InstrumentController
communicates with instruments. It could be initialized with
import instrument_control
instrument_controller = instrument_control.InstrumentController()
instrument_controller.handle({"function": "list"})
# ["ASRL1::INSTR", "GPIB0::12::INSTR", "GPIB0::17::INSTR"]
{"function": "open", "name": "H", "address": "GPIB0::12::INSTR"}
# {"instruments": "{'H': <'GPIBInstrument'('GPIB0::12::0::INSTR')>}"}
instrument_controller.handle({"function": "write", "name": "H", "command": "*IDN?"})
# {"wrote": "*IDN?"}
instrument_controller.handle({"function": "read", "name": "H"})
# {"read": "LSCI,MODEL625,LSA23Y7,1.3/1.1\r\n"}
instrument_controller.handle({"function": "query", "name": "H", "command": "*IDN?"})
# {"wrote": "*IDN?", "read": "LSCI,MODEL625,LSA23Y7,1.3/1.1\r\n"}
instrument_controller.handle({"function": "stb", "name": "H"})
# {"name": "H", "status": 0}
instrument_controller.handle({"function": "dataReady", "name": "E"})
# {"name": "E", "dataReady": true}
instrument_controller.handle({"function": "dataReady", "name": "E"})
# {"name": "E", "dataReady": false}
Once dataReady
is queried, further query will yield false
.
This page is entered via the command DE
.
CH
command
CHA, 'BBBBBB', 'CCCCCC', D, E
A
: SMU channel numberBBBBBB
: voltage nameCCCCCC
: current nameD
: mode
1
: voltage source mode2
: current source mode3
: commonE
: source function
Notes:
D
is set to common 3
, the source function E
must be set to constant 3
.BBBBBB
and CCCCCC
could have up to 6 characters.CH3, 'V1', 'I1', 1, 3
sets
SMU3
to source a fixed voltage (1V). The specified names for voltage and current areV1
andI1
, respectively.
CH1; CH2; CH3; CH4
disables channels 1 through 4.
This page is entered via the command SS
.
VR
and IR
command sets up the VAR1 source function
AAB, [+-]CCC.CCCC, [+-]DDD.DDDD, [+-]EEE.EEEE, [+-]FFF.FFFF
AA
: the source mode
VR
: voltage sourceIR
: current sourceB
: the sweep type
1
: linear sweep2
: \(\log_{10}\) sweep3
: \(\log_{25}\) sweep4
: \(\log_{50}\) sweepCCC.CCCC
: start valueDDD.DDDD
: stop valueEEE.EEEE
: step value (linear sweep only)
FFF.FFFF
: compliance value (linear sweep only)
Notes:
CCC.CCCC
, stop value DDD.DDDD
, step value EEE.EEEE
and compliance value FFF.FFFF
should not exceed
VR1, 1, 5, 1, 0.01
sets up a VAR1 linear sweep with a start \(1\,\mathrm{V}\), stop \(5\,\mathrm{V}\), step \(1\,\mathrm{V}\) and compliance \(10\,\mathrm{mA}\).
VP
and IP
command sets up the VAR2 step sweep
AA [+-]BBB.BBBB, [+-]CCC.CCCC, DD, [+-]EEE.EEEE [, FF]
AA
: the source mode
VP
: voltage sourceIP
: current sourceBBB.BBBB
: start valueCCC.CCCC
: step valueDD
: number of stepsEEE.EEEE
: compliance valueFF
: VAR2 source stepper index (1 to 4)Notes:
BBB.BBBB
, stop value CCC.CCCC
, and compliance value EEE.EEEE
are subjected to the limit stated in the VR
command.FF
may be omitted, in which case the default value is 1. If multiple VAR2 sources are defined via the CH
command, the first one defined will have index 1, the second one 2, etc.VP 5, 5, 3, 0.01
sets up a VAR2 voltage sweep with a start \(5\,\mathrm{V}\), step \(5\,\mathrm{V}\), in \(3\) steps, and a compliance \(10\,\mathrm{mA}\).
FS
command sets the offset value when VAR1'
is a selected source function
FS [+-]AAA.A [,B]
AAA.A
: offset valueB
: SMU channel; offset applies to all channels configured to VAR1'
if B
is not appliedNotes:
AAA.A
should not exceed 210.RT
command sets the ratio value when VAR1'
is a selected source function
RT [+-]AAA.A [, B]
AAA.A
ratio valueB
: SMU channel; ratio applies to all channels configured to VAR1'
if B
is not appliedRT +3,2 FS +2,2
sets up the
VAR1'
sweep with ratio 3 and offset 2 for Channel 2.
VC
and IC
command sets up the SMU to output a fixed (constant) voltage or current level
AAB, [+-]CCC.CCCC, [+-]DDD.DDDD
AA
: the source mode
VC
: voltage sourceIC
: current sourceB
: SMU channel numberCCC.CCCC
: output valueDDD.DDDD
compliance valueNotes:
CCC.CCCC
and compliance value DDD.DDDD
are subjected to the limit stated in the VR
command.HT
command sets a hold time that delays the start of a sweep
HT AAA.A
AAA.A
: hold time in seconds (0 to 655.3)DT
command sets the time duration spent on each step of the sweep for a VAR1
sweep
DT A.AAA
A.AAA
: delay time in seconds (0 to 6.553)This page is entered via the command SM
.
WT
command delays the start of a test sequence for time domain measurements.
WT AAA.AAA
AAA.AAA
: wait time in seconds (0 to 100)Notes:
WT 0.1
sets the wait time to 100 ms.
IN
command sets the time interval between sample measurements
IN AA.AA
AA.AA
: interval in seconds (0.01 to 10)Notes:
IN 0.1
sets the interval to 100 ms.
NR
command sets the number of readings that can be made for time domain measurements.
NR AAAA
AAAA
: number of measurements to makeNotes:
AAAA
ranges from 1 to 4096.NR 200
sets up the 4200A-SCS to make 200 sample measurements.
DM
command selects the Keysight 4145B display mode
DMA
A
: display modes
1
: graphics display mode2
: list display modeDM1
prepares the 4200A-SCS to receive graphics commands.
LI
command enables voltage and current functions to be measured when the 4200A-SCS is in list display mode
LI 'AAAAAA'
LI 'AAAAAA', 'AAAAAA'
LI 'AAAAAA', 'AAAAAA', 'AAAAAA'
LI 'AAAAAA', 'AAAAAA', 'AAAAAA', 'AAAAAA'
LI 'AAAAAA', 'AAAAAA', 'AAAAAA', 'AAAAAA', 'AAAAAA'
LI 'AAAAAA', 'AAAAAA', 'AAAAAA', 'AAAAAA', 'AAAAAA', 'AAAAAA'
AAAAAA
: the name assigned for CH
, VS
, or VM
LI 'V1', 'I1', 'VS1'
enables
V1
,I1
andVS1
to be measured.
This page is entered via the command MD
.
ME
command controls measurements
MEA
A
: measurement action
1
: SingleTrigger test, store readings in cleared buffer2
: RepeatTrigger test, store readings in cleared buffer3
: AppendTrigger test, append readings to buffer4
: StopAbort testME1
triggers the start of the test and stores the readings in the cleared buffer.
The following commands are valid in any pages.
BC
command clears all readings from the buffer
BC
Notes:
BC
also clears bit B0
(Data Ready) of the status byte.DR
command enables or disables service request for Data Ready.
DRA
A
: set service request for Data Ready
0
: disable service request for data ready1
: enable service request for data readyDO
command requests readings
DO 'AAAAAA'
AAAAAA
: user-specified name of the channel that made the measurementNotes:
N
: normalI
: interval too shortV
: overflow readingX
: oscillationC
: this channel in complianceT
: other channel in complianceDO 'Volt'
requests the reading string for a SMU channel that is named
Volt
.
IT
command sets the integration time
ITA
IT4, X, Y, Z
A
: integration time
1
: short (0.1 PLC)2
: medium (1.0 PLC)3
: long (10 PLC)4
: custom (4200A command set only)X
: delay factor for custom setting (0.0 to 100)Y
: filter factor for custom setting (0.0 to 100)Z
: A/D converter integration time in number of PLCs for custom setting (0.01 to 10.0)IT2
sets integration time to 1.0 PLC.
IT4, 2.5, 0.6, 1.3
sets the delay factor to 2.5, the filter factor to 0.6, and the A/D converted integration time to 1.3 PLCs.
*RST
command resets the instrument settings to default settings
*RST
Notes:
RG
command sets the lowest current range to be used when measuring.
RG A,B
A
: SMU channel numberB
: the lowest autoranged rangeNotes:
RG 2, 10E-12
sets the lowest range of SMU2 with a preamplifier to \(10\,\mathrm{pA}\).
A collection of operators may be found here.
(* _ matches any expression *)
f[x_] := x^2;
f[3] (* 9 *)
(* _h matches expression with head h *)
g[r_Rational | n_Integer] := 0;
g[x_Real] := 1;
g[0.5] (* 1 *)
g[1] (* 0 *)
g[1/2] (* 0 *)
(* x_?test matches expression that passes the test *)
h[x_Integer?(#>=0&)] := x;
h[x_Integer?(#<0&)] := -x;
h[3] (* 3 *)
h[-3] (* -3 *)
(* x_/;test also matches expression that passes the test *)
h[x_Integer?x>=0] := x;
h[x_Integer?x<0] := -x;
h[3] (* 3 *)
h[-3] (* -3 *)
(* f[x_:default] assigns default value to x *)
f[a_, b_:1] := a^b;
f[2, 3] (* 8 *)
f[2] (* 2 *)
(* another way to assign default value *)
Default[f] = 0;
f[x_., y_.] = {x, y};
f[a] (* {a, 0} *)
f[] (* {0, 0} *)
(* -> for replacement *)
rule1 = x_Symbol?(ContainsNone[{Plus, Times, Derivative}, {#}] &) ->
x';
rule2 = x_ + y_ -> x ** y;
rule3 = x_ y_ -> x + y;
rule4 = x_ ** y_ -> x y;
rule5 = x_'' -> x;
(x (a + b + c (d + e)) + y (z' + u' v' w')) /. rule1 //. rule2 //.
rule3 //. rule4 //. rule5
(* (z (u + v + w) + y') (a' b' (c' + d' e') + x') *)
(* x_ to match One argument *)
f[x_] := x;
f[] (* f *)
f[1] (* 1 *)
f[1, 2] (* f[1,2] *)
(* x__ to match One or More arguments *)
g[x__] := {x};
g[] (* g[] *)
g[1] (* {1} *)
g[1, 2] (* {1, 2} *)
(* x___ to match Zero, One or More arguments *)
h[x___] := {x}
h[] (* {} *)
h[1] (* {1} *)
h[1, 2] (* {1, 2} *)
$Assumptions = {a > 0, r > 0, (x | y | z) ∈ Reals};
Sqrt[a^2] // Simplify (* a *)
Sqrt[x^2] // Simplify (* Abs[x] *)
Abs'[x] // Simplify (* Sign[x] *)
Grad[s[Norm[{x, y, z}]], {x, y, z}] /. {x_^2 + y_^2 + z_^2 -> r^2} // FullSimplify
(* { x s'[r] / r, y s'[r] / r, z s'[r] / r } *)
ComplexExpand[(x + I y)^2]
(* x^2 - y^2 *)
To type \[ \int_a^b f(x) \dd{x}, \] we have the following shortcuts:
<Esc> int <Esc>
for \(\int\),<Ctrl+_>
for the lower bound,<Ctrl+%>
for the upper bound, and<Esc> dd <Esc>
for \(\dd{}\).(* f@x is equivalent to f[x] *)
Sqrt@4 (* 2 *)
Total@{1,2,3} (* 6 *)
(* f@@x is equivalent to Apply[f, x] *)
(* i.e. f@@{a, b, c} is equivalent to f[a, b, c] *)
Solve@@{x + 1 == 0, x} (* {{x -> -1}} *)
(* f@@@{ ... } applies on the first level *)
f@@@{{a, b}, {c, d}} (* {f[a, b], f[c, d]} *)
(* f/@{a, b, c, d, e} is equivalent to {f[a], f[b], f[c], f[d], f[e]} *)
#^2&/@{1, 2, 3} (* {1, 4, 9} *)
f /@ <|"a" -> x, "b" -> y|> (* <|"a" -> f[x], "b" -> f[y]|> *)
(* f@*g composites functions *)
f@*g@*h@x (* f[g[h[x]]] *)
(* f/*g composites functions in reversed order)
f/*g/*h@x (* h[g[f[x]]] *)
dict = <|"a" -> x, "b" -> y|>;
dict["a"] (* x *)
{#b, 1 + #b} & [<|"a"->x, "b" -> y |>] (* {y, 1 + y} *)
<|"a" -> x, "b" -> {5, 6}|>[["b", 1]] (* 5 *)
element[A_String, i_Integer, j_Integer] :=
Symbol[A <> ToString@i <> "x" <> ToString@j];
matrix[A_String, d_Integer] := Table[element[A, i, j], {i, d}, {j, d}];
sol = Solve[{matrix["A", 2].matrix["A", 2] == PauliMatrix[1]},
Flatten[matrix["A", 2]]] // FullSimplify;
matrix["A", 2] /. sol[[1]] // MatrixForm
Symmetry has two meanings in physics.
Galileo's Relativity Principle states that the Lagranian is invariant under Galileo transformations.
The Poincaré transformations includes
Under such transformations, \begin{align*} \delta S &= \int \delta L(u^2)\dd{t} + \int L(u^2) \delta \dd{t} \\ &= \int \dd{t} \qty(2 \dv{L(u^2)}{(u^2)} \qty(1-\frac{u^2}{c^2}) + L\qty(u^2)) \dot{\vb*{r}} \cdot \vb*{\epsilon}, \end{align*} which demands \[ L = A + B\sqrt{1-\frac{u^2}{c^2}}. \] Finally we obtain \[ S = -mc^2 \int \sqrt{1-\frac{u^2}{c^2}}\dd{t}. \]
For many particles, \[ S = \int \dd{t} \qty{-\sum_i \qty[mc^2 \sqrt{1-\frac{u_i^2}{c^2}} + V\qty(\vb*{r}_i, \vb*{u}_i, t)]}. \]
For a particle in a electromagnetic field, we have \[ L = -mc^2 \sqrt{1-\frac{v^2}{c^2}} - q\phi + q\dot{\vb*{r}}\cdot \vb*{A}. \] We obtain from the Euler-Lagrange equation that \[ \dv{}{t}\qty(m\gamma \dot{\vb*{r}}) = q\vb*{E} + q \dot{\vb*{r}}\times \vb*{B}. \]
In curvilinear coordinates we have \[ L = \sqrt{1-g_{ij} \dv{y_i}{t} \dv{y_j}{t}}. \]
In covariant form we write \[ S = -m \int \dd{\tau} = -m \int \sqrt{-\eta_{\mu\nu} \dd{x^\mu} \dd{x^\nu}}. \]
The invariance of \(\dd{s^2}\) may be written as \[ \eta_{\mu\nu} {\Lambda}{^\mu}{_\rho} {\Lambda}{^\nu}{_\sigma} = \eta_{\rho\sigma}, \] or \[ \Lambda^T \eta \Lambda = \eta, \] which demands that \(\abs{\Lambda} = \pm 1\).
Poincarétransformations are given by \[ {X}{^{\mu'}} = {\Lambda}{^\mu}{_\nu} X^\nu + a^\mu. \]
For a massless particle, we have \[ \dd{s^2} = -\dd{t}^2 + \dd{x}^2 \] in any frame. Therefore, the particle travels at the speed of light in any frame.
It could be proven that the invariance of \(\dd{s^2}\) demands that the transformation matrix be constant (independent on \(x\)).
Since \[ \eta_{\mu\nu}{\Lambda}{^\mu}{_0} {\Lambda}{^\nu}{_0} = \eta_0, \] we find that \[ (\Lambda{^0}{_0})^2 = 1 + \sum_i (\Lambda{^i}_0)^2. \] Therefore, the Lorentz transformations may be classified as follows:
\(\abs{\Lambda} = 1\) (Proper, \(\operatorname{SO}{(1,3)}\)) | \(\abs{\Lambda} = -1\) | |
\(\Lambda{^0}{_0} \ge 1\) (Orthochronous) | Restricted, \(\operatorname{SO}{(1,3)}^\uparrow\) | Parity |
\(\Lambda{^0}{_0} \le -1\) | Time Reversal |
A Lorentz boost may be regarded as a \(t\)-\(x\) rotation, i.e. \[ {\Lambda}{^\mu}{_\nu} = \begin{pmatrix} \cosh \phi & \sinh \phi & 0 & 0 \\ \sinh \phi & \cosh \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \] where \(v = \tanh \phi\) and \(\gamma = \cosh\phi\).
A more general boost may be written as \[ \begin{align*} \Lambda{^0}{_0} &= \gamma, \\ \Lambda{^i}{_0} &= \gamma v^i, \\ \Lambda{^0}{_j} &= \gamma v^j, \\ \Lambda{^i}{_j} &= \delta_{ij} + v^i v^j \frac{\gamma-1}{v^2}. \end{align*} \]
Definitions and properties of the 4-velocity and 4-momentum are listed below.
For massless particles, we write the action \[ S = \frac{1}{2} \int \dd{\lambda} \eta_{\mu\nu} \dv{x^\mu}{\lambda} \dv{x^\nu}{\lambda} \] and \[ L = \frac{1}{2} \eta_{\mu\nu} \dv{x^\mu}{\lambda} \dv{x^\nu}{\lambda}. \]
The conjugate momentum is \[ p_\mu = \pdv{L}{\displaystyle\qty(\pdv{x^\mu}{\lambda})} = \eta_{\mu\nu} \dv{x^\mu}{\lambda}. \] A few properties of massless particles are listed below.
Properties of the 4-acceleration and 4-force are listed below.
Riemannian Manifold
Let \(M\) be a differentiable manifold. A Riemannian metric \(g\) on \(M\) is a type \((0,2)\) tensor field on \(M\) which satisfies the following axioms at each point \(p\in M\):
A tensor field \(g\) of type \((0,2)\) is a pseudo-Riemiann metric if
\(g_p(U,)\) gives rise to a one-form. Thus \(g_p\) gives rise to an isomorphism between \(T_p M\) and \(T_p^* M\).
We adopt the following notations:
If there are \(i\) positive eigenvalues and \(j\) negative eigenvalues, the pair \((i,j)\) is called the index of the metric.
If \((M,g)\) is Lorentzian, the elements of \(T_p M\) are divided into three classes as follows.
\((M,g)\) is a
If \(f: M \rightarrow N\) is the embedding which induces the submanifold structure of \(M\), the pullback map \(f^*\) induces the natural metric \(g_M = f^* g_N\) on \(M\). The components are given by \[ g_{M\mu\nu} (x) = g_{N \alpha \beta}(f(x)) \pdv{f^\alpha}{x^\mu} \pdv{f^\beta}{x^\nu}. \]
An affine connection \(\grad\) is a map \(\grad: \mathcal{X}\times \mathcal{X} \rightarrow \mathcal{X}\), or \((X,Y)\rightarrow \grad_X Y\) which satisfies the following conditions:
The connection coefficients are defined by \[ \grad_\nu e_\mu = e_\lambda {\Gamma}{^\lambda}_{\nu\mu}. \]
The covariant derivative of any vectors are given by \[ \grad_V W = V^\mu \qty(\pdv{W^\lambda}{x^\mu} + W^\nu {\Gamma}{^\lambda}_{\mu\nu}) e_\lambda, \] or \[ \grad_\mu W^\lambda = \pdv{W^\lambda}{x^\mu} + {\Gamma}{^\lambda}_{\mu\nu} W^\nu. \]
Note
If a vector field \(X\) satisfies the condition \[ \grad_V X = 0, \] where \(\displaystyle V = \dv{}{t}\) is the tangent vector to \(c(t)\), then \(X\) is said to be parallel transported along \(c(t)\).
The condition is written in terms of the components as \[ \dv{X^\mu}{t} + {\Gamma}{^\mu}_{\nu\lambda} \dv{x^\nu}{t} X^\lambda = 0. \]
If the tangent vector of \(c(t)\) itself is parallel transported along \(c(t)\), i.e. \[ \dv[2]{x^\mu}{t} + {\Gamma}{^\mu}_{\nu\lambda} \dv{x^\nu}{t} \dv{x^\lambda}{t} = 0, \] then \(x(t)\) is called the geodesic. More generally, the equation should be written as \[ \grad_V V = fV. \]
We require that \[ \grad_X (T_1 \otimes T_2) = (\grad_X T_1)\otimes T_2 + T_1 \otimes (\grad_X T_2). \]
For one-forms we define \[ (\grad_X \omega)_\nu = X^\mu \partial_\mu \omega_\nu - X^\mu {\Gamma}^{\lambda}_{\mu\nu} \omega_\lambda, \] or \[ (\grad_\mu \omega)_\nu = \partial_\mu \omega_\nu {\Gamma}^{\lambda}_{\mu\nu}\omega\lambda, \] especially for the basis we have \[ \grad \dd{x^\nu} = -{\Gamma}{^\nu}_{\mu\lambda} \dd{x^\lambda}. \]
For a general tensor we have \begin{align*} \grad_\nu t^{\lambda_1 \cdots \lambda_p}_{\mu_1 \cdots \mu_q} &= \partial_\nu t^{\lambda_1 \cdots \lambda_p}_{\mu_1 \cdots \mu_q} \\ &{\phantom{{}={}}} + {\Gamma}{^{\lambda_1}}_{\nu\kappa} t^{\kappa\lambda_2 \cdots \lambda_p}_{\mu_1 \cdots \mu_q} + \cdots + {\Gamma}{^{\lambda_p}}_{\nu\kappa} t^{\lambda_1 \cdots \lambda_{p-1}\kappa}_{\mu_1 \cdots \mu_q} \\ &{\phantom{{}={}}} - {\Gamma}{^\kappa}_{\nu\mu_1} t^{\lambda_1 \cdots \lambda_p}_{\kappa\mu_2 \cdots \mu_q} + \cdots - {\Gamma}{^\kappa}_{\nu\mu_q} t^{\lambda_1 \cdots \lambda_p}_{\mu_1 \cdots \mu_{q-1}\kappa}. \end{align*}
To make \(\grad_V W\) transform like a vector, the connection coefficients should satisfy \[ \tilde{\Gamma}{^\gamma}_{\alpha\beta} = \pdv{x^\lambda}{y^\alpha} \pdv{x^\mu}{y^\beta} \pdv{y^\gamma}{x_\nu} {\Gamma}{^\nu}_{\lambda\mu} + \frac{\partial^2 x^\nu}{\partial y^\alpha \partial y^\beta} \pdv{y^\gamma}{x^\nu}. \]
We demand that if \(X\) and \(Y\) are parallel transported along any curve, then \(g(X,Y)\) is constant along the curve, i.e. \[ (\grad_\kappa g)_{\mu\nu} = 0. \]
We make a few definitions here:
The torsion tensor \(T: \mathcal{X}(M) \otimes \mathcal{X}(M) \rightarrow \mathcal{X}(M)\) is defined by \[ T(X,Y) = \grad_X Y - \grad_Y X - [X,Y] \] and the Riemann curvature tensor \[R: \mathcal{X}(M) \otimes \mathcal{X}(M) \otimes \mathcal{X}(M) \rightarrow \mathcal{X}(M)\] by \[ R(X,Y,Z) = \grad_X \grad_Y Z - \grad_Y \grad_X Z - \grad_{[X,Y]}Z. \]
It can be shown that \(T\) and \(R\) are multilinear objects that satisfies \[ T(X,Y) = -T(Y,X) \] and \[ R(X,Y)Z = -R(Y,X)Z, \] or, in component forms, that \[ {T}{^\lambda}_{\mu\nu} = -{T}{^\lambda}_{\nu\mu} \] and \[ {R}{^\kappa}_{\lambda\mu\nu} = -{R}{^\kappa}_{\lambda\nu\mu}. \]
In component form we have
\[ {T}{^\lambda}_{\mu\nu} = \langle \dd{x^\lambda},T(e_\mu,e_\nu)\rangle = {\Gamma}{^\lambda}_{\mu\nu} - {\Gamma}{^\lambda}_{\nu\mu}, \]
and
\begin{align*} {R}{^\kappa}_{\lambda\mu\nu} &= \langle \dd{x^\kappa}, R(e_\mu,e_\nu)e_\lambda \rangle \\ &= \partial_\mu {\Gamma}{^\kappa}_{\nu\lambda} - \partial_\nu {\Gamma}{^\kappa}_{\mu\lambda} + {\Gamma}{^\eta}_{\nu\lambda} {\Gamma}{^\kappa}_{\mu\eta} - {\Gamma}{^\eta}_{\mu\lambda} {\Gamma}{^\kappa}_{\nu\eta} \\ &= \partial_{[\mu} {\Gamma}{^\kappa}_{\nu]\lambda} + {\Gamma}{^\kappa}_{[\mu|\eta}{\Gamma}{^\eta}_{|\nu]\lambda}. \end{align*}
The Ricci tensor \(\operatorname{Ric}\) is defined by \[ \operatorname{Ric}{(X,Y)} = \langle \dd{x^\mu}, R(e_\mu,Y) X\rangle, \] or, in component form, by \[ \operatorname{Ric}_{\mu\nu} = {R}{^\lambda}_{\mu\lambda\nu}. \] The scalar curvature \(\mathcal{R}\) is defined by \[ \mathcal{R} = g^{\mu\nu} \operatorname{Ric}{(e_\mu,e_\nu)} = \operatorname{Ric}{^\mu}{_\nu}. \]
A connection \(\grad\) is called a symmetric connection if the torsion tensor vanishes, i.e. \[ {\Gamma}{^\lambda}_{\mu\nu} = {\Gamma}{^\lambda}_{\nu\mu}. \] The Fundamental Theorem of (pseudo-)Riemannian Geometry On a pseudo-Riemannian manifold \((M,g)\), there exists a unique symmetric connection which is compatible with the metric \(g\), called the Levi-Civita connection.
Since the torsion is zero, we have \[ \grad_\mu \grad_\nu f = \grad_\nu \grad_\mu f. \]
The Levi-Civita connection of a one-form \(\omega\) is the exterior differentiation, \[ \dd{\omega} = (\grad_\mu \omega)_\nu \dd{x^\mu} \wedge \dd{x^\nu}. \]
In polar coordinates on \(\mathbb{R}^2\), \[ g = \dd{r}\otimes \dd{r} + r^2 \dd{\phi} \otimes \dd{\phi} \] and we have \begin{align*} {\Gamma}{^\phi}_{r\phi} &= {\Gamma}{^\phi}_{\phi r} = r^{-1}, \\ {\Gamma}{^r}_{\phi\phi} &= -r. \end{align*}
On \(S^2\) we have \[ g = \dd{\theta}\otimes \dd{\theta} + \sin^2\theta \dd{\phi}\otimes \dd{\phi} \] and \begin{align*} {\Gamma}{^\theta}_{\phi\phi} &= -\cos\theta \sin\theta, \\ {\Gamma}{^\phi}_{\theta\phi} &= {\Gamma}{^\phi}_{\phi\theta} = \cot\theta. \end{align*}
The Euler-Lagrange equation of \[ F = \frac{1}{2} g_{\mu\nu} x'^\mu x'^\nu \] is given by \[ \dv{}{s} \qty(\pdv{F}{\dot{x}^\lambda}) - \pdv{F}{x^\lambda} = 0, \] which could be utilized to compute the Christoffel symbols.
On \(S^2\) we have \[ F = \frac{1}{2}(\theta'^2 + \phi'^2 \sin^2\theta ), \] which yields the Euler-Lagrange equations \begin{gather*} \dv[2]{\theta}{s} - \sin\theta \cos\theta \qty(\dv{\phi}{s})^2 = 0, \\ \dv[2]{\phi}{s} + 2\cot\theta \dv{\phi}{s} \dv{\theta}{s} = 0. \end{gather*} We could read off \begin{gather*} {\Gamma}{^\theta}_{\phi\phi} = -\sin\theta\cos\theta, \\ {\Gamma}{^\phi}_{\phi\theta} = {\Gamma}{^\phi}_{\theta\phi} = \cot\theta. \end{gather*}
The normal coordinate system based on \(p\) with basis \(\qty{e_\mu}\) is defined such that the coordinate of \(q\) in the neighbourhood of \(q\) is given by the tangent vector \(X_q\) such that the geodesic \(c_q(t)\) starting from \(p\) with initial velocity \(X_q\) satisfies \(c_q(1) = q\).
We define \(\operatorname{EXP}: T_p M \rightarrow M\) by \[ \operatorname{EXP}: X_q \mapsto q. \] By definition we have \[ \varphi(\operatorname{EXP}X_q^\mu e_\mu) = X^\mu_q. \] If \(c\) is a geodesic, then we have \[ \varphi(c(t)) = X^\mu = X^\mu_q t. \] In the normal coordinate system at \(p\), we have \[ {\Gamma}{^\mu}_{\nu\lambda}(p) = 0. \] The covariant derivative of any tensor \(t\) at \(p\) in this coordinate system could be written as \[ \grad_X t = X[t]. \]
The following symmetries holds for Levi-Civita connection:
The number of independent components of the Riemann tensor is \[ \frac{1}{12} n^2 (n^2 - 1). \]
On a two-dimensional manifold we have \[ R_{\kappa\lambda\mu\nu} = \frac{\mathcal{R}}{2}(g_{\kappa\mu}g_{\lambda\nu} - g_{\kappa\nu}g_{\lambda\mu}). \]
The zweibeins on \(S^2\) are given by \[ \begin{array}{cc} e{^1}_\theta = 1, & e{^1}_\phi = 0, \\ e{^2}_\theta = 0, & e{^2}_\phi = \sin\theta, \end{array} \] which give rise to \[\hat{\theta}^1 = \dd{\theta},\quad \hat{\theta}^2 = \sin\theta\dd{\phi}\] and \[g = \hat{\theta}^1 \otimes \hat{\theta}^1 + \hat{\theta}^2 \otimes \hat{\theta}^2.\] The non-vanishing components of \(c_{\alpha\beta}^\gamma\) are \[c_{12}{^2} = -c_{21}{^1} = -\cot\theta.\]
We use sub-indices \(\kappa,\lambda,\mu\nu,\cdots\) for coordinate basis while \(\alpha,\beta,\gamma,\delta,\cdots\) for non-coordinate basis.
The transformation laws are given by \[ V^\mu = V^\alpha e{_\alpha}^\mu,\quad V^\alpha = e{^\alpha}_\mu V^\mu. \]
We define \[ \grad_{\hat{e}_\alpha} \hat{e}_\beta = \Gamma{^\gamma}_{\alpha\beta} \hat{e}_\gamma \] and find that
Since in the non-coordinate basis the metric is given by the Minkowski metric, the transformations that keeps the metric invariant are elements of the Lorentz group.
The transformation laws of tensors under these rotations are preserved.
We define the Ricci rotation coefficient \(\Gamma_{\alpha\beta\gamma}\) \[ \Gamma_{\alpha\beta\gamma} = \eta_{\alpha\delta}\Gamma{^\delta}_{\beta\gamma} \] and express the metric compatibility as \begin{gather*} \Gamma_{\alpha\beta\gamma} = -\Gamma_{\gamma\beta\alpha} \\ \Updownarrow \\ \omega_{\alpha\beta} = -\omega_{\beta\alpha}. \end{gather*} The torsion-free condition is \[ \dd{\hat{\theta}^\alpha} + \omega{^\alpha}{_\beta} \wedge \hat{\theta}^\beta = 0. \] Under this condition we have \[ c_{\alpha\beta}{^\gamma} = \Gamma{^\gamma}_{\alpha\beta} - \Gamma{^\gamma}_{\beta\alpha}. \] We could express the Riemann curvature tensor in terms of \(\Gamma\) only. \[ R{^\alpha}_{\beta\gamma\delta} = \hat{e}_\gamma [{\Gamma}{^\alpha}_{\delta\beta}] - \hat{e}_\delta [{\Gamma}{^\alpha}_{\gamma\beta}] + \Gamma{^\epsilon}_{\delta\beta} \Gamma{^\alpha}_{\gamma\epsilon} - {\Gamma}{^\epsilon}_{\gamma\beta} \Gamma{^\alpha}_{\delta\epsilon} - (\Gamma{^\epsilon}_{\gamma\delta} - \Gamma{^\epsilon}_{\delta\gamma}) \Gamma{^\alpha}_{\epsilon\beta}. \]
On \(S^2\) we have \[ e{^1}{_\theta} = 1,\quad e{^1}{_\phi} = 0,\quad e{^2}{_\theta} = 0,\quad e{^2}{_\phi} = \sin\theta. \]
- We note first that \(\omega_{11} = \omega_{22} = 0\).
- We obtain the conenction one-forms from the torsion-free conditions: \begin{align*} \dd{(\dd{\theta})} + \omega{^1}{_2} \wedge (\sin\theta\dd{\phi}) &= 0, \\ \dd{(\sin\theta \dd{\phi})} + \omega{^2}{_1}\wedge \dd{\theta} &= 0, \end{align*} that \[ \omega{^2}{_1} = -\omega{^1}{_2} = \cos\theta \dd{\phi}. \]
- From Cartan's structure equations we obtain the curvature tensor. \begin{align*} \omega{^1}{_2} \wedge \omega{^2}{_1} &= \frac{1}{2} R{^1}_{1\alpha\beta} \hat{\theta}^\alpha \wedge \hat{\theta}^\beta, \\ \dd{\omega{^1}{_2}} &= \frac{1}{2} R{^1}_{2\alpha\beta} \hat{\theta}^\alpha \wedge \hat{\theta}^\beta, \\ \dd{\omega{^2}{_1}} &= \frac{1}{2} R{^2}_{1\alpha\beta} \hat{\theta}^\alpha \wedge \hat{\theta}^\beta, \\ \omega{^2}{_1} \wedge \omega{^1}{_2} &= \frac{1}{2} R{^2}_{2\alpha\beta} \hat{\theta}^\alpha \wedge \hat{\theta}^\beta. \end{align*} The non-zero components are obtained to be \begin{align*} R{^1}_{212} = -R{^1}_{221} &= \sin\theta, \\ R{^2}_{112} = -R{^2}_{121} &= -\sin\theta. \end{align*}
- The curvature in the original coordinate is obtained by a transformation back, e.g. \[ R{^\theta}_{\phi\theta\phi} = e{_\alpha}{^\theta} e{^\beta}{_\phi} e{^\gamma}{_\theta} e{^\delta}{_\phi} R{^\alpha}_{\beta\gamma\delta} = \frac{1}{\sin^2 \theta} R{^1}_{212} = \frac{1}{\sin\theta}. \]
The Schwarzschild metric is given by \[ \dd{s^2} = -\hat{\theta}^0 \otimes \hat{\theta}^0 + \hat{\theta}^1 \otimes \hat{\theta}^1 + \hat{\theta}^2 \otimes \hat{\theta}^2 + \hat{\theta}^3 \otimes \hat{\theta}^3. \] where \begin{align*} \hat{\theta}^0 &= \qty(1-\frac{2M}{r})^{1/2} \dd{t}, \\ \hat{\theta}^1 &= \qty(1-\frac{2M}{r})^{-1/2} \dd{r}, \\ \hat{\theta}^2 &= r\dd{\theta}, \\ \hat{\theta}^3 &= r\sin\theta \dd{\phi}. \end{align*}
- We first note that \[ \omega{^0}{_0} = \omega{^1}{_1} = \omega{^2}{_2} = \omega{^3}{_3} = 0. \]
- The torsion-free condition yields \begin{align*} \dd{\qty[\qty(1-\frac{2M}{r})^{1/2}\dd{t}]} + \omega{^0}{_\beta}\wedge \hat{\theta}^\beta &= 0, \\ \dd{\qty[\qty(1-\frac{2M}{r})^{-1/2}\dd{t}]} + \omega{^0}{_\beta}\wedge \hat{\theta}^\beta &= 0, \\ \dd{(r\dd{\theta})} + \omega{^2}{_\beta}\wedge\hat{\theta}^\beta &= 0, \\ \dd{(r\sin\theta\dd{\theta})} + \omega{^3}{_\beta} \wedge \hat{\theta}^\beta &0. \end{align*}
- We obtain the connection one-forms \begin{align*} \omega{^0}{_1} = \omega{^1}{_0} &= \frac{M}{r^2} \dd{t}, \\ \omega{^2}{_1} = -\omega{^1}{_2} &= \qty(1-\frac{2M}{r})^{1/2}\dd{\theta}, \\ \omega{^3}{_1} = -\omega{^1}{_3} &= \qty(1-\frac{2M}{r})^{1/2}\sin\theta \dd{\phi}, \\ \omega{^3}{_2} = -\omega{^2}{_3} &= \cos\theta\dd\phi. \end{align*}
- The curvature two-forms are found to be \begin{align*} R{^0}{_1} = R{^1}{_0} &= \frac{2M}{r^3} \hat{\theta}^0 \wedge \hat{\theta}^1, \\ R{^0}{_2} = R{^2}{_0} &= -\frac{M}{r^3} \hat{\theta}^0 \wedge \hat{\theta}^2, \\ R{^0}{_3} = R{^3}{_0} &= -\frac{M}{r^3} \hat{\theta}^0 \wedge \hat{\theta}^3, \\ R{^1}{_2} = -R{^2}{_1} &= -\frac{M}{r^2} \hat{\theta}^1 \wedge \hat{\theta}^2, \\ R{^1}{_3} = -R{^3}{_1} &= -\frac{M}{r^2} \hat{\theta}^1 \wedge \hat{\theta}^3, \\ R{^2}{_3} = -R{^3}{_2} &= \frac{2M}{r^2} \hat{\theta}^2 \wedge \hat{\theta}^3. \end{align*}
Cartan's First Structure Equation. \[ \dd{\vb*{e}^\nu} = -\vb*{e}^\mu \wedge {\omega}{_\mu}{^\nu}. \]
Cartan's Second Structure Equation. \[ {\vb*{R}}{_\mu}{^\nu} = \dd{\omega{_\mu}{^\nu}} + {\omega}{_\mu}{^\lambda} \wedge {\omega}{_\lambda}{^\nu}. \]
To obtain the Riemann tensor, we use \[ {\vb*{R}}{_\mu}{^\nu} = \frac{1}{2} R_{\rho\sigma\mu}{^\nu} \vb*{e}^\rho \wedge \vb*{e}^\sigma. \]
To obtain the connection 1-form, we let \[ \Lambda_{\mu\nu\rho} = [(e_\nu)_{\lambda,\tau} - (e_\nu)_{\tau,\lambda}](e_\mu)^\lambda (e_\rho)^\tau \] and apply \[ \omega_{\mu\nu\rho} = \frac{1}{2}(\Lambda_{\mu\nu\rho} + \Lambda_{\rho\mu\nu} - \Lambda_{\nu\rho\mu}). \]
The number of independent elements of \(\Lambda\) is \[ \frac{1}{2}n^2 (n-1), \] which becomes \(2,9,24\) in \(d=2,3,4\), respectively.
We obtain the curvature tensor for \[ \dd{s}^2 = -e^{2A(r)}\dd{t}^2 + e^{2B(r)}\dd{r}^2 + r^2(\dd{\theta}^2 + \sin^2\theta \dd{\varphi}^2). \]
Definition Let \(p\) be a point in \((M,g)\) with connection \(\grad\) and consider the set of closed loops at \(p\), \[ \Set{c(t) | 0\le t\le 1, c(0) = c(1) = p}. \] Take a vector \(X\in T_p M\) and parallel transport \(X\) along \(c(t)\), which results in a new vector \(X_c \in T_p M\). Therefore, the parallel transport induces a linear transformation \[ P_c: T_p M \rightarrow T_p M. \] The set of these transformations is denoted by \(H(p)\) and is called the holonomy group at \(p\).
The product of elements in \(H(p)\) is the linear transformation induced by the product of the \(c(t)\)'s.
If \((M,g)\) is parallelizable, \(H(p)\) may be made trivial.
We assume that \(H(p)\) acts on \(T_p M\) from the right, i.e. \[ P_c X = Xh \Leftrightarrow P_cX = X^\mu h{_\mu}{^\nu} e_\nu. \]
If \(M\) is (arcwise-)connected, and the curve \(a\) connects \(p\) and \(q\). Then the parallel transport along \(a\) defines a linear transform \(\tau_a: T_p M \rightarrow T_q M\). The holonomy groups \(H(p)\) and \(H(q)\) are related by \[ H(q) = \tau_a^{-1} H(p)\tau_a. \]
If \(\grad\) is a metric connection, \(\grad\) preserves the length of vector and therefore \(H(p)\subset \operatorname{SO}{(m)}\) if it's orientable and Riemannian, and \(\operatorname{SO}{(m-1,1)}\) if it's orientable and Lorentzian.
Parallel transport along \(\theta = \theta_0\) on \(S^2\) is given by \begin{align*} \partial_\phi X^\theta - \sin\theta_0 \cos\theta_0 X^\phi &= 0, \\ \partial_\phi X^\phi + \cot\theta_0 X^\theta = 0, \end{align*} which has the solution for \(X^\theta=1\) at \(\phi_0\) \[ \begin{cases} \displaystyle X^\theta = \cos(2\pi \cdot C_0), \\ \displaystyle X^\phi = -\frac{\sin(2\pi C_0)}{\sin\theta_0}. \end{cases} \]
In general, \(S^m\) for \(m>2\) admits the holonomy group \(\operatorname{SO}{(m)}\).
A diffeomorphism \(f:M\rightarrow M\) is an isometry if it preserves the metric \[ f^* g_{f(p)} = g_p, \] i.e. if \[ g_{f(p)}(f_* X, f_* y) = g_p(X,Y). \] All isometries form a group.
A diffeomorphism \(f: M\rightarrow M\) is called a conformal transformation if it preserves the metric up to a scale, \[ f^* g_{f(p)} = e^{2\sigma} g_p, \] i.e. \[ g_{f(p)} (f_* X, f_* Y) = e^{2\sigma} g_p (X,Y), \] where \(\sigma \in \mathcal{F}(M)\).
The map \(f:(x,y) \mapsto (u,v)\) defined by a analytic function is conformal.
Let \(g\) and \(\overline{g}\) be metrics on a manifold \(M\). \(\overline{g}\) is said to be conformally related to \(g\) if \[ \overline{g}_p = e^{2\sigma(p)} g(p). \] The equivalence class is called the conformal structure. The transformation \(g\rightarrow e^{2\sigma} g\) is called a Weyl rescaling.
Let \[ K(X,Y) = \overline{\grad}_X Y - \grad_X Y, \] where \(\overline{\grad}\) denotes the connection with respect to \(\overline{g} = e^{2\sigma} g\).
Proposition Let \(U\) be a vector field which corresponds to the one-form \(\dd{\sigma}\). Then \[ K(X,Y) = X[\sigma]Y + Y[\sigma X] - g(X,Y)U. \] We rewrite \(\overline{R}(X,Y)Z\) using \(\grad\) and \(K\), and expand \(K\) using the above equation. Then we arrive at \[ \overline{R}{^\kappa}_{\lambda\mu\nu} = R{^\kappa}_{\lambda\mu\nu} - g_{\nu\lambda} B{_\mu}{^\kappa} + g_{\xi\lambda}B{_\mu}{^\xi} \delta{^\kappa}{_\nu} - g_{\xi\lambda} B{_\nu}{^\xi} \delta{^\kappa}{_\mu} + g_{\mu\lambda}B{_\nu}{^\kappa}, \] where \[ B{_\mu}{^\kappa} = -\partial_\mu \sigma U^\kappa + (\grad_\mu U)^\kappa + \frac{1}{2} U[\sigma] \delta{_\mu}{^\kappa}, \] which satisfies \[ B_{\mu\nu} = B_{\nu\mu}. \]
Let \(m\) denote the dimension of \(M\). By contraction we find
If every point \(p\) of a (pseudo-)Riemann manifold \((M,g)\) has a chart \((U,\varphi)\) containing \(p\) such that \(g_{\mu\nu} = e^{2\sigma} \delta_{\mu\nu}\), then \((M,g)\) is said to be conformally flat.
Let \(\dd{s^2} = \dd{\theta^2} + \sin^2\theta \dd{\phi^2}\) be the metric on \(S^2\). Then \[f: (\theta,\phi) \rightarrow \qty{u = \log \abs{\tan \frac{\theta}{2}}, v=\phi}\] yields a conformally flat metric: \[\dd{s^2} = \sin^2\theta \qty(\frac{\dd{\theta}^2}{\sin^2\theta} + \dd{\phi^2}) = \sin^2\theta (\dd{u^2} + \dd{v^2}).\]
Let \(X\) be a vector field on \((M,g)\). The following condition are equivalent:
Let \(X\) and \(Y\) be two Killing vector fields.
A set of Killing vector fields are defined to be dependent if one of them is expressed as a linear combination of others with constant coefficients.
For the Minkowski spacetime \((\mathbb{R}^4,\eta)\), the Killing equations becomes \[ \partial_\mu X_\nu + \partial_\nu X_\mu = 0. \] \(X_\mu\) could be atmost linear in \(x\). The constant solutions generate translations. Let \[ X_\mu = a_{\mu\nu} x^\mu. \] We then find that \(a_{\mu\nu}\) should be anti-symmetric. This form admits \(6\) independent solutions, \(3\) of which space rotation and \(3\) boosts.
In \(m\)-dimensional Minkowski spacetime (\(m\ge 2\)), there are \(m(m+1)/2\) Killing vector fields. Those spacetime which admit \(m(m+1)/2\) Killing vector fields are called maximally symmetric spaces.
The Killing equations on \(S^2\) is written as \begin{align*} \partial_\theta X_\theta + \partial_\theta X_\theta &= 0, \\ \partial_\phi X_\phi + \partial_\phi X_\phi + 2\sin\theta \cos\theta X_\theta &= 0, \\ \partial_\theta X_\phi + \partial_\phi X_\theta - 2\cot\theta X_\phi &= 0. \end{align*} Therefore, \(X_\theta\) is independent of \(\theta\). The solution is given by \begin{align*} X_\theta &= A\sin\phi + B\cos\phi, \\ X_\phi &= (A\cos\phi - B\sin\phi) \sin\theta\cos\theta + C_1 \sin^2\theta. \end{align*} These give rise to vector fields generated by \begin{align*} L_x &= -\cos\phi \pdv{}{\theta} + \cot\theta\sin\phi \pdv{}{\phi}, \\ L_y &= \sin\phi \pdv{}{\theta} + \cot\theta\cos\phi \pdv{}{\phi}, \\ L_z &= \pdv{}{\phi}. \end{align*} These basis vectors generate the Lie algrabra \(\mathfrak{so}(3)\).
In general, \(S^n = \mathrm{SO}(n+1)/\mathrm{SO}(n)\) admits \[\dim \mathrm{SO}(n+1) = \frac{n(n+1)}{2}\] Killing vector fields. They are maximally symmetric spaces.
Let \(X\) be a vector field on \((M,g)\). The following condition are equivalent:
Let \(X\) and \(Y\) be two CKVs.
Let \(x^\mu\) be the coordinate of \((\mathbb{R}^m,\delta)\). Then \[D = x^\mu \pdv{}{x^\mu}\] is a CKV since \[ \mathcal{L}_D \delta_{\mu\nu} = \partial_\mu x^\kappa \delta_{\kappa\nu} + \partial_\nu x^\lambda \delta_{\mu\lambda} = 2\delta_{\mu\nu}. \]
The invariant volume element is defined by \[ \Omega_M = \sqrt{\abs{g}} \dd{x^1}\wedge \dd{x^2} \wedge\cdots \wedge \dd{x^m}. \] An integration of \(f\in \mathcal{F}(M)\) over \(M\) may be defined by \[ \int_M f\Omega_M = \int_M f\sqrt{\abs{g}} \dd{x^1} \cdots \dd{x^m}. \]
We define the totally anti-symmetric tensor by \[ \epsilon_{\mu_1 \cdots \mu_m} = \operatorname{sign}{(\mu_1 \cdots \mu_m)}. \] By raising the indices we get \[ \epsilon^{\mu_1 \cdots \mu_m} = g^{-1} \epsilon_{\mu_1 \cdots \mu_m}. \] The Hodge * operation is a linear map \[ *: \Omega^r(M) \rightarrow \Omega^{m-r}(M) \] defined by \[ *(\dd{x^{\mu_1}} \wedge \cdots \wedge \dd{x^{\mu_r}}) = \frac{\sqrt{\abs{g}}}{(m-r)!} \epsilon{^{\mu_1 \cdots \mu_r}}{_{\nu_{r+1} \cdots \nu_m}} \dd{x^{\nu_r + 1}} \wedge \cdots \wedge \dd{x^{\nu_m}}. \]
Applying the Hodge * twice does not yield the original form.
The inner product or two \(r\)-forms is defined by \begin{align*} (\omega,\eta) &= \int \omega \wedge *\eta \\ &= \frac{1}{r!} \int_M \omega_{\mu_1 \cdots \mu_r} \eta^{\mu_1 \cdots \mu_r} \sqrt{\abs{g}} \dd{x^1} \cdots \dd{x^m}. \end{align*} The inner product is
We define the adjoint exterior derivative \[ \dd{^\dagger}: \Omega^r(M) \rightarrow \Omega^{r-1}(M) \] by
We have that
The Laplacian \[ \bigtriangleup: \Omega^r(M) \rightarrow \Omega^r(M) \] is defined by \[ \bigtriangleup = (\dd{} + \dd{^\dagger})^2 \dd{\dd{^\dagger}} + \dd{^\dagger\dd{}}. \]
Let \(f \in \mathcal{F}(M)\), we could easily verify that \[ \bigtriangleup f = -\frac{1}{\sqrt{\abs{g}}} \partial_\nu [\sqrt{\abs{g}}g^{\nu\mu}\partial_\mu f]. \]
The Maxwell's equations may be written as \begin{align*} \dd{F} = \dd{^2 A} &= 0, \\ \dd{^\dagger F} = \dd{^\dagger \dd{A}} = j, \end{align*} where \(A = A_\mu \dd{x^\mu}\). With the Lorentz gauge \[ \dd{^\dagger A} = 0, \] the inhomogeneous equation may be written as \[ \bigtriangleup A = j. \]
If \((M,g)\) is a compact Riemannian manifold without boundary, then \(\bigtriangleup\) is a positive operator on \(M\): \[ (\omega, \bigtriangleup \omega) = (\dd{\omega},\dd{\omega}) + (\dd{^\dagger \omega}, \dd{^\dagger \omega}) \ge 0. \]
Theorem. An \(r\)-form \(\omega\) is harmonic if and only if \(\omega\) is closed and coclosed.
Hodge Decomposition Theorem. Let \((M,g)\) be a compact orientable Riemannian manifold without a boundary. Then \[ \Omega^r(M) = \dd{\Omega^{r-1}}(M) \oplus \dd{^\dagger \Omega^{r+1}(M)} \oplus \mathrm{Harm}^r{(M)}. \] If \(r=0\), we define \(\Omega^{-1}(M) = \qty{0}\).
Theorem. If \(\eta_r\) is orthogonal to \(\mathrm{Harm}^r{(M)}\), then \[ \eta_r = \bigtriangleup \psi_r \] for some \(\psi_r \in \Omega^r(M)\). In particular, the Hodge decomposition may be given by \[ \omega_r = \dd{\dd{^\dagger \psi_r}} + \dd{^\dagger \dd{\psi_r}} + \Pi_{\operatorname{Harm}} \omega_r. \]
Hodge's Theorem. On a compact orientable Riemannian manifold \((M,g)\), \[ H^r(M) \cong \mathrm{Harm}^r{(M)}. \] The isomorphism is provided by identifying \([\omega]\) with \(\Pi_{\operatorname{Harm}} \omega\).
In particular, we have \[ \operatorname{dim}\mathrm{Harm}^r{(M)} = \operatorname{H}{^r (M)} = b^r, \] and \[ \chi(M) = \sum (-1)^r b^r = \sum (-1)^r \operatorname{dim}\mathrm{Harm}^r{(M)}. \]
The Einstein tensor is defined by \[ G^{\mu\nu} = \operatorname{Ric}^{\mu\nu} - \frac{1}{2}g^{\mu\nu}\mathcal{R}. \] The contracted Bianchi identity guarantees the conservation law \[ \grad_\mu G^{\mu\nu} = 0. \] The Einstein field equation is given by \[ G_{\mu\nu} = 8\pi GT_{\mu\nu}. \]
The Einstein-Hilbert action is defined by \[ \color{orange} S_{\mathrm{EH}} = \frac{1}{16\pi G} \int \mathcal{R} \sqrt{-g}\dd{^4 x}. \]
The action of matter is given by \[ S_{\mathrm{M}} = \int \mathcal{L}(\phi) \sqrt{-g} \dd{^4 x}. \]
Under the variation \[ g_{\mu\nu} \rightarrow g_{\mu\nu} + \delta g_{\mu\nu}, \] we have
\[\displaystyle \delta g^{\mu\nu} R_{\mu\nu} \neq \delta g_{\mu\nu} R^{\mu\nu}.\]
An \(m\)-dimensional manifold \(M\) is said to be parallelizable if \(M\) admits \(m\) vector fields which are linearly independent everywhere. \(S^m\) is parallelizable only if \(m=1,3\) or \(7\).
Source | Definition | Conversion |
---|---|---|
Nakahara, Frankel, Schutz, Carroll, TensoriaCalc | \(\displaystyle [\grad_\mu, \grad_\nu] X^\kappa = {R}{^\kappa}_{\lambda\mu\nu} X^\lambda\) | \({R}{^\kappa}_{\lambda\mu\nu}={R}{^\kappa}_{\lambda\mu\nu}{}\) |
C.B. Liang, Wald Abstract Index | \(\displaystyle [\grad_a,\grad_b]X^c = -R_{abd}{^c} X^d\) | \(\displaystyle R_{abd}{^c}\leftrightarrow R{^c}_{dba}\) |
The TensoriaCalc
package could calculate \(R{^\kappa}_{\lambda\mu\nu}\) from the metric given.
<< "Documents/Wolfram Mathematica/TensoriaCalc.m";
g["Example"] = Metric[
SubMinus[i], SubMinus[j],
DiagonalMatrix[{-Exp[2 A[r]], Exp[2 B[r]], r^2,
r^2 Sin[\[Theta]]^2}],
CoordinateSystem -> {t, r, \[Theta], \[Phi]},
TensorName -> "h", StartIndex -> 0,
ChristoffelOperator -> FullSimplify,
RiemannOperator -> FullSimplify,
RicciOperator -> FullSimplify,
RicciScalarOperator -> FullSimplify
];
Rie[i_, j_, k_, l_] :=
Riemann[SuperMinus[i], SubMinus[j], SubMinus[k], SubMinus[l],
g["Example"]
];
Module[{i, j, k, l},
For[i = 0, i < 4, i++,
For[j = 0, j < 4, j++,
For[k = 0, k < 4, k++,
For[l = 0, l < 4, l++,
If[! Rie[i, j, k, l] === 0,
Print[Subscript[Superscript[R, i], j, k, l], "=",
Rie[i, j, k, l]]
]
]
]
]
]
];
]]]]] We could see \[ R{^1}_{010} = e^{2(A(r) - B(r))}(A'(r)^2 - A'(r)B'(r) + A''(r)), \] which coincides with our result in Obtaining the Curvature Tensor.
\[ \color{orange} S_\psi = \int \dd{^4 x} \sqrt{-g} \overline{\psi}\qty[i\gamma^\alpha e{_\alpha}{^\mu} (\partial_\mu + A_\mu + \frac{1}{2} i\Gamma{^\beta}{_\mu}{^\gamma} \Sigma_{\beta\gamma}) + m]\psi. \]
Let consider the following three systems:
- a wire of length \(L\) with tension \(F\),
- a paramagnetic of magnetization \(M\) in a magnetic field \(B\), and
- a gas of volume \(V\) at pressure \(P\). The equilibrium of the first and the third ststem implies \[\qty(P+\frac{a}{V^2})(V-b)(L-L_0) - c\qty[F-K(L-L_0)] = 0\] while of the second and the thrid implies \[\qty(P+\frac{a}{V^2})(V-b)M - dB = 0.\] These conditions induces the following definition of temperature: \[\Theta \propto \qty(P+\frac{a}{V^2})(V-b) = c\qty(\frac{F}{L-L_0}-K) = d\frac{B}{M}.\] The constraints above implies the following equations of states: \begin{gather*} (P+a/V^2)(V-b) = Nk_B T, \\ M = (M\mu_B^2 B)/(3k_B T), \\ F = (K+DT)(L-L_0). \end{gather*}
The first law may be written as \[ \dd{E} = \mathfrak{d} Q + \mathfrak{d} W. \]
A quasi-static transformation is one that is performed sufficiently slowly so that the system is always in equilibrium. Thus in any stage of the process the thermodynamics coordinates of the system exist and can in principle be computed.
By slowing stretching a spring, the external force is matched by the internal force \(F\) from the spring. The change in the potential energy is \(\int F\dd{L}\). However, if the spring is stretched abruptly, some of the external work is converted into kinetic energy.
We may introduce a set of generalized displacements \(\qty{\vb*{x}}\) and their conjugate generalized forces \(\qty{\vb*{J}}\), such that for an infinitesimal quasi-static transformation \[ \mathfrak{d} W = \sum_i J_i \dd{x_i}. \]
System | Force | Displacement | ||
---|---|---|---|---|
Wire | tension | \(F\) | length | \(L\) |
Film | surface tension | \(\mathcal{S}{}\) | area | \(A\) |
Fliud | pressure | \(-P\) | volume | \(V\) |
Magnet | magnetic field | \(H\) | magnetization | \(M\) |
Dielectric | electric field | \(E\) | polarization | \(P\) |
Chemical reaction | chemical potential | \(\mu\) | particle number | \(N\) |
Heat capacities may be expressed as \begin{align*} C_V &= \eval{\pdv{E}{T}}_P, \\ C_P &= \eval{\pdv{E}{T}}_P + P\eval{\pdv{V}{T}}}_P. \end
Force constants are the ratio of displacement to force.
System | Exchange |
---|---|
Isolated | None |
Closed | Energy |
Open | Energy and Particle |
Let \(f\) be an irreducible polynomial in \(F[x]\).
Heuristically, we write a polynomial with multiple roots as \[f(x) = g(x)(x-\alpha)^2.\] Then \[f'(x) = g'(x)(x-\alpha)^2 + 2g(x)(x-\alpha)\] has a common factor \((x-\alpha)\) with \(f(x)\).
Let \(K\) be an extension of \(F\). If the extension \(K/F\) is generated by a single element \(\alpha\), then \(\alpha\) is called the primitive element of \(K/F\). We have the following theorem:
Primitive Element Theorem. If \(F\) has characteristic \(0\), then any extension \(K/F\) has a primitive element.
The extension \(K=\mathbb{Q}\qty(\sqrt{2},\sqrt{3})\) is of degree \(4\). We could easily prove that \(K=\mathbb{Q}\qty(\sqrt{2}+\sqrt{3})\), i.e. the extension has a primitive element \(\alpha = \sqrt{2} + \sqrt{3}{}\).
We may verify that \[\sqrt{2} = \frac{1}{2}\qty(\alpha^3-9\alpha)\] and that \[\sqrt{3} = -\frac{1}{2}\qty(\alpha^3-11\alpha).\] Such decomposition exists because \(\alpha^i\) could always be written as linear combinations of \(\sqrt{2}{}\), \(\sqrt{3}{}\) and \(\sqrt{6}{}\). By solving a linear equation we retrieve \(\sqrt{2}{}\) and \(\sqrt{3}{}\) from powers of \(\alpha\).
\(S_n\) acts on \(R[u]\) by \[f=f(u_1,\cdots,u_n)\mapsto f(u_{\sigma 1},\cdots,u_{\sigma n}) = \sigma f.\]
This action is straightforward for someone who has experience with quantum mechanics. By regarding \(f\) as the wavefunction of a many-body system, \(\sigma f\) becomes the wavefunction after permutation of particles.
A polynomial \(g\) is symmetric if \(g\) is invariant under any permutation, i.e. if all monomials in the same orbit have the same coefficient.
Theorem. Any symmetric polynomial could be written (uniquely) as a linear combination of elementary symmetric polynomials.
We define the elementary symmetric polynomials by \begin{align*} s_1 &= u_1 + u_2 + \cdots + u_n, \\ s_2 &= u_1u_2 + u_1u_3 + \cdots, \\ s_3 &= u_1u_2u_3 + \cdots, \\ s_n &= u1 u_2 \cdots u_n. \end{align*}
We have \[u_1^2 + \cdots + u_n^2 = s_1^2 - 2s_2.\]
Corollary. If \(f(x) = x^n - a_1x^{n-1} + \cdots + a_n\) has coefficients in \(F\) and splits over \(K\) with roots \(\alpha_1\), \(\cdots\), \(\alpha_n\). Let \(g\qty(u_1,\cdots,u_n)\) be a symmetric polynomial with coefficients in \(F\), then \(g(\alpha_1,\cdots,\alpha_n)\) is in \(F\).
From the Vieta's formulae we know that the roots \(x_1\) and \(x_2\) of \[x^2 - bx + c = 0\] satisfies \[x_1 + x_2 = b,\quad x_1x_2 = c\] even if the roots are in \(\mathbb{R}\backslash \mathbb{Q}\) while the coefficients are in \(\mathbb{Q}\). Moreover, symmetric polynomials like \[x_1^2 + x_2^2 = (x_1+x_2)^2 - 2x_1x_2\] evaluate to values in \(\mathbb{Q}\) as well.
Proposition. Let \(h\) be a symmetric polynomial and \(\qty{p_1,\cdots,p_k}\) be the orbit of \(p_1\) under \(S_n\), then \[h(p_1,\cdots,p_k)\] is a symmetric polynomial.
For the simplest case we take \[h = p_1 + \cdots + p_k,\] i.e. the sum of every element in the orbit.
Let the roots of \[P(x) = x^n - s_1 x^{n-1} + s_2 x^{n-2} - \cdots \pm s_n\] be \(\qty{u_1,\cdots,u_n}\). The discriminant of \(P\) is defined by \[D(u) = (u_1 - u_2)^2 (u_1 - u_3)^2 \cdots (u_{n-1} - u_n)^2 = \prod_{i<j} (u_i - u_j)^2.\]
We are able to write \(D\) as a sum of elementary symmetric polynomials.
In the case of degree 2, we have \[D = (u_1 - u_2)^2 = s_1^2 - 4s_2.\]
We assume that \(F\) has characteristic \(0\) hereinafter.
\(f\) splits over \(K\) if \[f(x) = (x-\alpha_1) \cdots (x-\alpha_n)\] in \(K\).
Let \(f\) be a polynomial over \(F\). The splitting field of \(f\) is an extension \(K/F\) such that
Lemma. Let \(f\) be a polynomial over \(F\).
Splitting Field Theorem. Let \(K\) be the splitting field of \(f\) as a polynomial over \(F\). Let \(g\) be an irreducible polynomial over \(F\). If \(g\) has a root in \(K\), then \(g\) split over \(K\).
Outline of Proof. Let \(K\) be generated by \(\alpha_1\),\(\cdots\),\(\alpha_n\), and \(\beta_1\) be a root of \(G\) in \(K\). Let \[p_1(\alpha) = \beta_1,\] and \(\qty{p_1,\cdots,p_k}\) be the orbit of \(p_1\) under \(S_n\) and \[\beta_k = p_k(\alpha).\] We may prove that the coefficients of \[h(x) = (x-\beta_1)\cdots (x-\beta_k)\] are in \(F\). Therefore, \(g\) divides \(h\) since \(h\) has \(\beta_1\) as a root and \(g\) splits since \(h\) splits.
For any quadratic extension \(K/F\), e.g. \(\mathbb{C}/\mathbb{R}\) and \(\mathbb{Q}(\sqrt{2})/\mathbb{Q}\), the Galois group has two elements: the trivial one, and the conjugation, i.e. \[a+bi \mapsto a-bi\] or \[a+b\sqrt{2} \mapsto a-b\sqrt{2}.\]
Let \(F=\mathbb{Q}\) and \(K=F[\sqrt[3]{2}]\). Since \(x^3-2=0\) has two more roots which are complex and do not belong to \(K\), we have \[G(K/F) = \qty{e}\] while \([K:F]=3\). Therefore, the extension is not Galois.
Lemma. Let \(K\) and \(K'\) be extensions of \(F\).
Proposition. Let \(f\) be a polynomial over \(F\).
Let \(H\) be an automorphism group of \(K\). The fixed field of \(H\) consists of all the elements invariant under every elements of \(H\), \[K^H = \Set{\alpha\in K|\sigma(\alpha)=\alpha,\ \text{for all } \sigma \in H}.\]
Theorem. Let \(H\) be a finite automorphism group of \(K\), and \(F\) be the fixed field \(K^H\). Let \(\beta_1\) be an element of \(K\) and \(\qty{\beta_1,\cdots,\beta_r}\) be the \(H\)-orbit of \(\beta_1\).
Let \(K=\mathbb{C}\) and \(H = \qty{e, c}\) where \(c\) denotes conjugation. Then \(F = \mathbb{R}\) and the irreducible polynomial of \(\beta \in \mathbb{C}\) is given by
- \(g(x) = x-\beta\) if \(\beta \in \mathbb{R}\), or
- \(g(x) = (x-\beta)(x-\overline{\beta})\) if \(\beta \in \mathbb{C}\backslash \mathbb{R}\).
Lemma. Let \(K\) be an algebraic extension of \(F\) and not be a finite extension. Then there exists elements in \(K\) of arbitrary large degrees over \(F\).
Fixed Field Theorem. Let \(H\) be a finite automorphism group of \(K\) and \(F=K^H\) be the fixed field thereof. Then \(K\) is a finite extension over \(F\), the degree \([K:H]\) of which equals \(\abs{H}\). \[[K:K^H] = \abs{H}.\]
Let \(K=\mathbb{C}(t)\), and \(\sigma\) and \(\tau\) be \(\mathbb{C}\)-automorphisms of \(K\), such that \[\sigma(t) = it\] and \[\tau(t) = t^{-1}.\] We have \[\sigma^4 = 1,\quad \tau^2 = 1,\quad \tau\sigma = \sigma^{-1}\tau.\] Therefore, \(\sigma\) and \(\tau\) generate the \(D_4\) group.
We may easily verify that \(u = t^4 + t^{-4}\) is transcendental over \(\mathbb{C}\). Now we prove that \(\mathbb{C}(u) = K^H\).
Since \(u\) is fixed by \(\sigma\) and \(\tau\) we have \(\mathbb{C}(u)\in K^H\). The \(H\)-orbits of \(t\) is given by \[\qty{t,it,-t,-it,t^{-1},-it^{-1},-t^{-1},it^{-1}}.\] From the theorem above we obtain the irreducible polynomial of \(t\) over \(\mathbb{C}(u)\): \[x^8 - ux^4 + 1.\]
- Therefore, \([K:\mathbb{C}(u)] \le 8\).
- From the fixed field theorem we know \([K:K^H] = 8\).
- We have already proved that \(\mathbb{C}(u) \subset K^H\).
- Thus we conclude that \(\mathbb{C}(u) = K^H\).
The example above illustrates the Lüroth theorem: Let \(F \subset \mathbb{C}(t)\) be a field that contains \(\mathbb{C}\) and not be \(\mathbb{C}\) itself. Then \(F\) is isomorphic to \(\mathbb{C}(u)\).
Lemma.
Lemma. Let \(\gamma_1\) be the primitive element of a finite extension \(K/F\) and \(f(x)\) be the irreducible polynomial of \(\gamma_1\) over \(F\). Let \(\gamma_1,\cdots,\gamma_r\) be roots of \(f\) in \(K\). Then there exists a unique \(F\)-automorphism \(\sigma_i\) of \(K\) such that \(\sigma_i(\gamma_1) = \gamma_i\). These are all the \(F\)-automorphisms. Therefore, \(\abs{G(K/F)}=r\).
Characteristics of Galois Extension. Let \(K/F\) be a finite extension and \(G\) be the Galois group thereof.Then the following statements are equivalent:
If \(K\) is a splitting field of \(f\) over \(F\), we may refer to \(G(K/F)\) as the Galois group of \(f\).
Corollary.
Theorem. Let \(K/F\) be a Galois extension and \(G\) be its Galois group, and \(g\) be a polynomial over \(F\) that splits in \(K\) with roots \(\beta_1,\cdots,\beta_r\).
The Fundamental Theorem. Let \(K\) be a Galois extension over \(F\), and \(G\) be the Galois group thereof. Then there is a one-to-one correspondence between \[\qty{\text{subgroup } H \text{ of } G}\] and \[\qty{\text{intermediate field } L \text{ of } K/F}.\] The mapping \[H\mapsto K^H\] is the inverse of \[L\mapsto G(K/L).\]
Corollary.
Corollary. A finite extension \(K/F\) has finitely many intermediate fields \(F\subset L\subset K\).
Let \(F=\mathbb{Q}\), and \(\alpha=\sqrt{2}\), \(\beta=\sqrt{5}\), and \(K = F(\alpha,\beta)\). Then \(G=G(K/\mathbb{Q})\) is of order \(4\). Since \[F(\alpha),\quad F(\beta),\quad F(\alpha\beta)\] are three distinct intermediate fields, \(G\) has three nontrivial subgroups and therefore \(G\) is the Klein group. Therefore, there are not other intermediate fields.
Theorem. Let \(K/F\) is a Galois extension and \(G\) be the Galois group thereof. Let \(L=K^H\) where \(H\) is a subgroup of \(G\). Then
Let \[f(x) = x^3 - a_1 x^2 + a_2 x - a_3\] be a irreducible polynomial over \(F\) and \(K\) be the splitting field thereof. Let \(\qty{\alpha_1,\alpha_2,\alpha_3}\) denotes the roots of \(f\). We have \[ F\subset F(\alpha_1) \subset F(\alpha_1,\alpha_2) = F(\alpha_1,\alpha_2,\alpha_3) = K \] since \[\alpha_3 = a_1 - \alpha_1 - \alpha_2.\] Let \(L=F(\alpha_1)\), then \[ f(x) = (x-\alpha_1) q(x) \] over \(L\).
Let \(f(x) = x^3 + 3x + 1\). \(f(x)\) is irreducible over \(\mathbb{Q}\) and has one real root and two complex roots. Therefore, \([K:F]=6\).
Let \(f(x) = x^3 - 3x + 1\). \(f(x)\) is irreducible over \(\mathbb{Q}\). If \(\alpha_1\) is one root then \(\alpha_2 = \alpha_1^2 - 2\) is another. Therefore, \([K:F]=3\).
Let \(f\) be a irreducible polynomial (having no multiple root therefore) over \(F\). Then \(G(K/F)\) is a transitive subgroup of \(S_3\). We have either \(G = S_3\) or \(G = A_3\), corresponding to \([K:F] = 6\) and \([K:F] = 3\) respectively.
Galois Theory of Cubic Equation. Let \(K\) be the splitting field of a cubic polynomial \(f\) over \(F\), and \(G = G(K/F)\).
The discriminant of \(f=x^2+3x+1\) is \(-5\cdot 3^2\), which is not a square. Therefore, \([K:F] = 6\).
The discriminant of \(f=x^2-3x+1\) is \(3^4\), which is a square. Therefore, \([K:F] = 3\).
Galois Theory of Quartic Equation. Let \(G\) be the Galois group of an irreducible quartic polynomial. Then the discriminant \(D\) of \(f\) is a square in \(F\) if and only if \(G\) does not contain odd permutations. Therefore,
Denote the roots by \(\alpha_i\) and let \[ \beta_1 = \alpha_1 \alpha2 + \alpha_3 \alpha_4,\quad \beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4,\quad \beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3, \] and \[ g(x) = (x-\beta_1)(x-\beta_2)(x-\beta_3). \]
\(D\) is a square | \(D\) is not a square | |
\(g\) is reducible | \(G=D_2\) | \(G=D_4\) or \(C_4\) |
\(g\) is irreducible | \(G=A_4\) | \(G=S_4\) |
Proposition. Let \(F\) be a subfield of \(\mathbb{C}\). Then \(\alpha\in\mathbb{C}\) is solvable over \(F\) if it satisfy either of the following two equivalent conditions:
Theorem. Let \(f\) be a irreducible quintic polynomial over \(F\) and that the Galois group thereof is \(A_5\) or \(S_5\). Then the roots of \(F\) are not solvable over \(F\).
Proof. We assume that \(G=A_5\), and let
The Galois extensions and Galois groups are listed in the graph below.
Now we prove that \(H\cong G = A_5\).
Take \(x^4 - 4x^2 + 2\) for example. The roots are given by \[\alpha = \pm\sqrt{2\pm\sqrt{2}}.\] Taking \(F = \mathbb{Q}\), \(K'=K = F(\alpha_1,\alpha_2,\alpha_3,\alpha_4)\) and \(F' = F(\sqrt{2})\), we find that \[K'=K=F(\sqrt{2},\sqrt{2+\sqrt{2}},\sqrt{2-\sqrt{2}}).\] \(K'=K\) looks in \(F'\) like \[K'=K=F'(\sqrt{2+\sqrt{2}})\] since \[(\sqrt{2}-1)\sqrt{2+\sqrt{2}} = \sqrt{2-\sqrt{2}}.\] We find that \[G'\cong C_2,\quad H \cong C_2.\]
To obtain the Galois group of a certain polynomial, one may go to the Magma online calculator and submit the following code:
P<x> := PolynomialAlgebra(Rationals());
f := x^4 - 2*x^2 - 1;
G := GaloisGroup(f);
print G;
To make an SSH tunnel, one should
sudo iptables -I INPUT -p tcp --dport 12345 -j ACCEPT
/etc/ssh/sshd_config
:GatewayPorts clientspecified
sshd
service withsystemctl restart sshd
ssh -v -R 0.0.0.0:12345:127.0.0.1:80 -N user@remote.site
which redirect port 12345 on the remote machine to port 80 on the local machine.
Note from ren'youkei 連用形.
連用形 may be used to refer to the act of a verb, i.e. as 転成名詞.
縛る to tie with rope → 縛り a restraint, tying
感じる to feel → この感じ this feeling; いい感じ good feeling
Replacing the が particle by the の particle refers to the action of the subject.
師匠の教え what master taught
太郎の考えが正しい the thinking of Tarou is correct
子供の遊び a game that children play
For する-verbs, the し is not preserved after の.
キノが旅する Kino journeys
キノの旅 the journey of Kino
It's also possible to change the adverb that modified a verb into an adjective that modified the nound.
彼女がよく育てられた she was raised well
彼女の育ちがいい her raising is good
Adding に after the noun form expresses the objective of another action.
助けに行く to go help
遊びに来た came to play
喧嘩しに来た came to fight
連用形 only turns the verb alone into noun.
私わ漫画を読みが好きだ私は漫画を読むのが好きだ
Sometimes the meaning is idiosyncratic.
彼は話すのが早い he talks fast
彼は話が早い he understands things quickly
An example after の:
私の読みが正しければ if my guess is correct
Sometimes the noun form is spelled without 送り仮名.
光る → 光
話す → 話
The 連用形 coming before ながら means that two events are occuring concurrently.
食べながらテレビを見るな don't watch TV while eating
漫画を読みながら音楽を聴く to listen to music while reading manga
つつ can be synonymous with ながら.
つつ can also mean the continuation of an event (changing), in the pattern つつある.
状況が悪化する the situation worsens 状況が悪化しつつある the situation keeps worsening
つつ is used to express how a change keeps progressing, while 続く is used to express that something continues happening.
The Hall resistance is given by \[ R_H = \frac{V_H}{I}. \] In the anomalous Hall effect (AHE), the Hall resistance may have in addition to the contribution from \(B\) a contribution from \(M\), i.e. \[ R_H = R_O B + R_A M. \] The AHE has extrinsic and intrinsic origin.
The spin Hall effect results in spin accumulation on the lateral surfaces of a current-carrying sample, the signs of the spin orientations being opposite on two opposite boundaries.
Schematic of the SHE
Schematic of the inverse SHE
The quantum Hall effect is the phenomenon that the in a strong magnetic field, the longitudinal conductance becomes zero while the quantum plateau of Hall conductance appears at \(\nu e^2/h\), where \(\nu = 1,2,\cdots\). When one Laudau level is fully filled, the filling factor is \(\nu = 1\).
In a sample of higher mobility, there may be fractional quantum Hall effect where \(\nu = 1/3,2/3,1/5,2/5,...\) Such effect in a topological phase of composite fermions, which breaks time reversal symmetry.
In a lattice system of spinless electrons in a periodic magnetic flux, electrons may be driven to form a conducting edge channel by the periodic magnetic flux, leading to the quantum anomalous Hall effect, i.e. the QHE in the absence of an external field or landau levels.
The quantum spin Hall effect is a quantum version of the SHE or a spin version of the QHE, and can be regarded as a combination of two quantum anomalous Hall effects of spin-up and spin-down electrons with opposite chirality.
Hall Effect\(B\neq 0\)1879 | → | AHE\(B=0\), \(M\neq 0\)1880 | → | SHE\(B=0\), \(M=0\)2004-2006 | |
↓ | ↓ | ↓ | |||
QHE\(\sigma_H = n\dfrac{e^2}{h}\)1980/1982 | → | QAHE\(\sigma_H = \dfrac{e^2}{h}\)not yet confirmed | → | QSHE\(\sigma_S = \dfrac{e}{4\pi}\)2007 |
A topological insulator is a state of a quantum matter that behaves as an insulator in its interior while as a metal on its boundary.
Some examples are listed as follows.
In the Dirac equation (see my note) we set \[ H = c\vb*{p}\cdot \alpha + mc^2 \beta. \] Under a transformation of mass \(m\rightarrow -m\), the equation is invariant if we replace \(\beta \rightarrow -\beta\). There is no topological distinction between particles with positive and negative masses.
The absence of a negatively charged electron that has a negative mass and kinetic energy would manifest itself as a positively charged particle which has an equal positive mass and positive energy.
Let \[ h(x) = -iv\hbar \partial_x \sigma_x + m(x) v^2 \sigma_z \] where \[ m(x) = \begin{cases} -m_1, & \text{if } x<0, \\ +m_2, & \text{otherwise}. \end{cases} \]
The solution for \(x>0\) is given by \[ \begin{pmatrix} \varphi_1(x) \\ \varphi_2(x) \end{pmatrix} = \begin{pmatrix} \varphi_1^+ \\ \varphi_2^+ \end{pmatrix} e^{-\lambda_+ x} \] where \[ \lambda_+ = \frac{\sqrt{m_2^2 v^4 - E^2}}{\nu \hbar} \] For \(x<0\) the solution is similar. The continuity condition allows a solution at \(E=0\).
More generally, for any \(m(x)\) that changes from negative to positive at two ends, we also have a solution \[ \varphi_\eta(x) \propto \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ \eta i \end{pmatrix} \exp\qty[-\int^x \eta \frac{m(x')v}{\hbar}\dd{x'}], \] where \(\eta\) is a sign, taking value \(\pm 1\).
With \(p_z=0\) we find two solutions \[ \Psi_+(x,k_y) = \sqrt{\frac{v}{h}\frac{m_1m_2}{m_1+m_2}}\begin{pmatrix} 1 \\ 0 \\ 0 \\ i \end{pmatrix} e^{-\abs{m(x) vx}/\hbar + ik_y y} \] and \[ \Psi_-(x,k_y) = \sqrt{\frac{v}{h}\frac{m_1m_2}{m_1+m_2}}\begin{pmatrix} 0 \\ 1 \\ i \\ 0 \end{pmatrix} e^{-\abs{m(x) vx}/\hbar + ik_y y} \] with dispersion relations \[ \epsilon_{k,+} = v\hbar k_y \] and \[ \epsilon_{k,-} = -v\hbar k_y, \] respectively. The two states move with velocity \[ v_\pm = \frac{\partial \epsilon_{k,\pm}}{\hbar \partial k} = \pm v. \]
We introduce a correction in the Hamiltonian and get \[ H = v\vb*{p}\cdot \alpha + (mv^2 - B\vb*{p}^2)\beta. \]
The Dirac equation in this case is given by \[ h(x) = vp_x \sigma_x + (mv^2 - Bp_x^2) \sigma_z, \] which admits solutions for \(x\ge 0\) under the Dirichlet condition \(\varphi(0) = 0\) \[ \varphi_\eta(x) = \frac{C}{\sqrt{2}} \begin{pmatrix} \operatorname{sign}{B} \\ i \end{pmatrix}\qty(e^{-x/\xi_+} - e^{-x/\xi_-}) \] where \[ \xi_\pm^{-1} = \frac{v}{2\abs{B}\hbar}\qty(1 \pm \sqrt{1-4mB}). \]
The four-component forms of the solutions are written as \[ \Psi_1 = \frac{C}{\sqrt{2}} \begin{pmatrix} \operatorname{sign}{B} \\ 0 \\ 0 \\ i \end{pmatrix} \qty(e^{-x/\xi_+} - e^{-x/\xi_-}) \] and \[ \Psi_2 = \frac{C}{\sqrt{2}} \begin{pmatrix} 0 \\ \operatorname{sign}{B} \\ i \\ 0 \end{pmatrix} \qty(e^{-x/\xi_+} - e^{-x/\xi_-}). \]
The exact solutions to \[ h_\pm = vp_x \sigma_x \pm vp_y\sigma_y + (mv^2 - Bp^2)\sigma_z \] is given by \begin{align*} \Psi_1 &= \frac{C}{\sqrt{2}} \begin{pmatrix} \operatorname{sign}{B} \\ 0 \\ 0 \\ i \end{pmatrix} \qty(e^{-x/\xi_+} - e^{-x/\xi_-}) e^{+ip_y y/\hbar}; \\ \Psi_2 &= \frac{C}{\sqrt{2}} \begin{pmatrix} 0 \\ \operatorname{sign}{B} \\ i \\ 0 \end{pmatrix} \qty(e^{-x/\xi_+} - e^{-x/\xi_-}) e^{+ip_y y/\hbar}, \\ \end{align*} where the characteristic length is given by \[ \xi_\pm^{-1} = \frac{v}{2\abs{B}\hbar}\qty(1\pm \sqrt{1-4mB + 4B^2p_y^2/v^2}). \]
In two dimensions, the Chern number for a system with Hamiltonian \[ H = \vb{d}(p)\cdot \sigma \] is given by \[ n_c = -\frac{1}{4\pi}\int \dd{\vb*{p}} \frac{\vb{d}\cdot \qty(\partial_{p_x}\vb{d}\times \partial_{p_y}\vb{d})}{d^3} \] where the integral runs over the first BZ. The result is given by \[ n_\pm = \pm\qty(\operatorname{sign}{m} + \operatorname{sign}{B})/2. \] The system is topologically nontrivial if \(n\neq 0\), i.e. \(m\) and \(B\) have the same sign.
Using the perturbation theory to the first order, the dispersion relation may be obtained to be \[ \epsilon_{p_y,\pm} = \pm vp_y. \]
In three dimensions the Hamiltonian is given by \[ H = H_{1D}(x) + H_{3D}(x) \] where \[ H_{3D}(x) = vp_y \alpha_y + vp_z\alpha_z - B(p_y^2 + p_z^2)\beta. \]
The exact solutions are given by \[ \Psi_\pm = C \Psi_\pm^0 \qty(e^{-x/\xi_+} - e^{-x/\xi_-})\exp\qty[+i\qty(p_y y + p_z z)/\hbar] \] where \begin{align*} \Psi_+^0 &= \begin{pmatrix} \cos \frac{\theta}{2} \operatorname{sign}{B} \\ -i \sin \frac{\theta}{2} \operatorname{sign}{B} \\ \sin \frac{\theta}{2} \\ i \cos \frac{\theta}{2} \end{pmatrix}; \Psi_-^0 &= \begin{pmatrix} \sin\frac{\theta}{2}\operatorname{sign}{B} \\ i \cos \frac{\theta}{2} \operatorname{sign}{B} \\ -\cos \frac{\theta}{2} \\ i\sin \frac{\theta}{2} \end{pmatrix}, \tan\theta &= \frac{p_y}{p_z}, \end{align*} and the dispersion is given by \[ \epsilon_{p\pm} = \pm vp \operatorname{sign}{B}. \] The penetration depth is \[ \xi_\pm^{-1} = \frac{v}{2\abs{B}\hbar} \qty(1\pm \sqrt{1-4mB + 4B^2 p^2 /\hbar^2}). \]
Under the condition \(mB>0\),
![]() |
Quantum Field Theory (II) | |
Quantization of Fields |
Feynman Diagrams
あの日見た1PIの伝播関数は僕たちはまだ知らない
We solve the problem where
We define a few quantities below.
We use Heisenberg picture in this subsection.
We reduce the cross section to the \(\mathcal{M}\) matrix.
When doing integration to get the total cross section or decay rate for a final state of \(n\) particles, one should either restrict the integration to inequivalent configurations or divide the result by \(n!\).
Born approximation: \[ \bra{p'}iT\ket{p} = -i\tilde{V}\qty(\vb*{q})(2\pi)\delta \qty(E_{\vb*{p}'} - E_{\vb*{p}}) \] where \(\vb*{q} = \vb*{p}' - \vb*{p}\).
LSZ Reduction Formula \[\color{red} \begin{align*} & \prod_1^n \int \dd{^4 x_i} e^{ip_i\cdot x_i} \prod_1^m \int \dd{^4 y_j} e^{-ik_i \cdot y_j} \bra{\Omega} T\qty{\phi(x_1) \cdots \phi(x_n) \phi(y_1) \cdots \phi(y_m)} \ket{\Omega} \\ & \underset{\substack{p_i^0 \rightarrow E_{\vb*{p}_i} \\ k_j^0 \rightarrow E_{\vb*{p}_j}}}{\sim} \qty( \prod_1^n \frac{\sqrt{Z} i}{p_i^2 - m^2 + i\epsilon} )\qty( \prod_1^m \frac{\sqrt{Z} i}{k_j^2 - m^2 + i\epsilon} ) \bra{\vb*{p}_1 \cdots \vb*{p}_n} S \ket{\vb*{k_1} \cdots \vb*{k}_m}. \end{align*} \]
The perturbed Hamiltonian has the form \[ H = H_0 + H_{\text{int}} = H_0 + H_{\text{Klein-Gordon}}. \]
In the \(\phi^4\) theory \[ H = H_0 + H_{\text{int}} = H_{\text{Klein-Gordon}} + \int \dd{^3 x} \frac{\lambda}{4!} \phi^4(x). \]
With \[ e^{-iHT}\ket{0} = e^{-iE_0 T} \ket{\Omega}\bra{\Omega}\ket{0} + \sum_{n\neq 0} e^{-iE_n T}\ket{n}\bra{n} \ket{0}, \] we find that \[ \ket{\Omega} = \qty(e^{-iE_0 T}\bra{\Omega}\ket{0})^{-1} e^{-iHT}\ket{0}, \] which simplifies to \[ \ket{\Omega} = \qty(e^{-iE_0(t_0 - (-T))}\bra{\Omega}\ket{0}) U(t_0, -T)\ket{0}. \]
After applying the momentum space Feynman rules, we are facing with \[ \int_{-T}^T \dd{z^0} \int \dd{^3 z} e^{-i(p_1 + p_2 + p_3 - p_4)\cdot z}. \] To prevent the integral from blowing up, we demand \[ p^0 \propto (1+i\epsilon), \] which is equivalent to the Feynman prescription of propagator.
Due to an unfortunate collision of notation, \(Z_0\) may stands for both the generating functional \(Z_0[J_A,J_B,\cdots]\) or the constant \[Z_0 = Z_0[0,0,\cdots].\]
In contractions, \(\phi\) is always under the interaction picture even without the subscript \(I\).
The time-ordered product of a Dirac field contains a factor of the sign of the permutation, e.g. \[ T\qty(\psi_1 \psi_2 \psi_3 \psi_4) = (-1)^3 \psi_3 \psi_1 \psi_4 \psi_2 \] if \[x_3^0 > x_1^0 > x_4^0 > x_2^0.\]
With the normal ordering we consider only either the \(a_{\vb*{p}}\) or \(a_{\vb*{p}}^\dagger\) part in the expansion of \(\color{blue}\phi_I\).
Wick's theorem: \begin{align*} & \color{red} T\qty{\phi(x_1)\phi(x_2)\cdots \phi(x_m)} \\ & \color{red} = N\qty{\phi(x_1)\phi(x_2)\cdots \phi(x_m) + \text{all possible contractions}}. \end{align*}
For \(m=4\) we have \begin{align*} & T\qty{\phi_1\phi_2\phi_3\phi_4} \\ &= N\big\{ \phi_1\phi_2\phi_3\phi_4 \\ & + {\color{blue}\phi_1}{\color{blue}\phi_2}\phi_3\phi_4 + {\color{blue}\phi_1}\phi_2{\color{blue}\phi_3}\phi_4 + {\color{blue}\phi_1}\phi_2\phi_3{\color{blue}\phi_4} \\ & + \phi_1{\color{blue}\phi_2}{\color{blue}\phi_3}\phi_4 + \phi_1{\color{blue}\phi_2}\phi_3{\color{blue}\phi_4} + \phi_1\phi_2{\color{blue}\phi_3}{\color{blue}\phi_4} \\ & + {\color{blue}\phi_1}{\color{blue}\phi_2}{\color{magenta}\phi_3}{\color{magenta}\phi_4} + {\color{blue}\phi_1}{\color{magenta}\phi_2}{\color{blue}\phi_3}{\color{magenta}\phi_4} + {\color{blue}\phi_1}{\color{magenta}\phi_2}{\color{magenta}\phi_3}{\color{blue}\phi_4}\big\}. \end{align*}
Since the normal order put annihilation on the right, we have \begin{align*} &\bra{0}T\qty{\phi_1\phi_2\phi_3\phi_4}\ket{0} \\ &= D_F(x_1 - x_2) D_F(x_3 - x_4) \\ &+ D_F(x_1 - x_3) D_F(x_2 - x_4) \\ &+ D_F(x_1 - x_4) D_F(x_2 - x_3). \end{align*}
Only fully paired contractions are present in\[\color{red}\bra{0}T\qty{\cdots}\ket{0}.\]
The \(m=4\) example may be rewritten using Feynman diagrams as
\(\bra{0}T\qty{\phi_1\phi_2\phi_3\phi_4}\ket{0} =\)
\(+\)
\(+\)
.
How do we convert the expression for \(\bra{\Omega}T\qty{\phi(x)\phi(y)}\ket{\Omega}{}\) into diagram?
Conclusion. \[ \begin{align*} &\phantom{{}={}} \color{red}\bra{\Omega}T\qty[\phi(x_1)\phi(x_2)\cdots \phi(x_n)]\ket{\Omega} \\ &\color{red}= \qty(\sum \text{ connected diagrams with } n \text{ external points}). \end{align*} \]
For the \(\phi^4\) perturbation to the first order we find \begin{align*} & \bra{0}T\qty{\phi(x)\phi(y)\qty(\frac{-i\lambda}{4!})\int \dd{^4 z}\phi(z)\phi(z)\phi(z)\phi(z)}\ket{0} \\ & = 3\cdot \qty(\frac{-i\lambda}{4!})D_F(x-y) \int \dd{^4 z} D_F(z-z)D_F(z-z) \\ & + 12 \cdot \qty(\frac{-i\lambda}{4!}) \int \dd{^4 z} D_F(x-z)D_F(y-z)D_F(z-z). \end{align*} This may be rewritten using Feynman diagrams as
\(+\)
.
One of the contractions in the \(\lambda^3\) term is given by \begin{align*} & \bra{0}{\color{blue}\phi}(x){\color{magenta}\phi}(y) \frac{1}{3!} \qty(\frac{-i\lambda}{4!})^3 \int \dd{^4 z} {\color{blue}\phi}{\color{cyan}\phi}{\color{cyan}\phi}{\color{green}\phi} \int \dd{^4 w} {\color{green}\phi}{\color{orange}\phi}{\color{red}\phi}{\color{magenta}\phi} \int \dd{^4 u} {\color{red}\phi}{\color{orange}\phi}{\color{purple}\phi}{\color{purple}\phi} \ket{0} \\ &= \frac{1}{3!}\qty(\frac{-i\lambda}{4!})^3 \int \dd{^4 z} \dd{^4 w} \dd{^4 u} D_F(x-z) D_F(z-z) D_F (z-w) D_F(w-y) D_F^2(w-u) D_F(u-u), \end{align*} which accounts for \[ 10368 = 3! \times 4\cdot 3 \times 4\cdot 3\cdot 2 \times 4\cdot 3 \times 1/2 \] contractions. The Feynman diagram is
.
To obtain the overall constant of a diagram in the \(\phi^4\) theory, we apply the following recipe:
In the equation for the \(T\)-matrix \[\begin{align*} &\bra{\vb*{p}_1 \cdots \vb*{p}_n} iT \ket{\vb*{p}_A \vb*{p}_B} \\ &= \qty({_0\bra{\vb*{p}_1 \cdots \vb*{p}_1}T\qty(\exp\qty[-i\int_{-T}^T \dd{t} H_I(t)])\ket{\vb*{p}_A \vb*{p}_B}_0})_{\substack{\text{connected,}\\\text{amputated}}}, \end{align*}{ }\] the terminologies are explained below.
Conclusion. \begin{align*} &\phantom{{}={}}\color{red} i\mathcal{M} \cdot (2\pi)^4 \delta^{(4)}\qty(p_A + p_B - \sum p_f) \\ &\color{red}= \begin{pmatrix} \text{sum of all connected, amputated Feynman} \\ \text{diagrams with } p_A, p_B \text{ incoming, } p_f \text{ outgoing} \end{pmatrix}. \end{align*}
Conclusion. \[ \color{red} i\mathcal{M} = \begin{pmatrix}\text{sum of all connected, amputated diagrams}\\ \text{in the momentum space}\end{pmatrix}. \]
The two rules above should be revised for loop diagrams.
The symmetry factor counts the number of ways of interchanging components without changing the diagram.
The symmetry factor of
is \(2\cdot 2\cdot 2 = 8\).
Rules for scattering in the position space is for \[ i\mathcal{M} \cdot (2\pi)^4 \delta^{(4)}\qty(p_A + p_B - \sum p_f), \] while in the momentum space for \[ i\mathcal{M}. \]
\[ H_{\mathrm{int}} = \int \dd{^3 x} \frac{\lambda}{4!} \phi^4(\vb*{x}). \]
In the integration on \(p\), we should take \(p^0\) as \(p^0\propto (1+i\epsilon)\), i.e. using the Ferynman prescription.
- \[{\color{blue}\phi_I}(x)\ket{\color{blue}\vb*{p}} = e^{-ip\cdot x}\ket{0}{ };\]
- \[\bra{\color{blue}\vb*{p}}{\color{blue}\phi_I}(x) = \bra{0} e^{+ip\cdot x}{ }.\]
We evalute \[\begin{align*} &\bra{\vb*{p}_1 \cdots \vb*{p}_n} iT \ket{\vb*{p}_A \vb*{p}_B} \\ &= \qty({_0\bra{\vb*{p}_1 \cdots \vb*{p}_1}T\qty(\exp\qty[-i\int_{-T}^T \dd{t} H_I(t)])\ket{\vb*{p}_A \vb*{p}_B}_0})_{\substack{\text{connected,}\\\text{amputated}}}, \end{align*}{ }\] to the zeroth and first order below, ignoring the prescription connected and amputated first.
Zeroth order: trivial because of the conservation of momentum. \begin{align*} _0\bra{\vb*{p}_1 \vb*{p}_2}\ket{\vb*{p}_A \vb*{p}_B}_0 &= \sqrt{2E_1 2E_2 2E_A 2E_B} \bra{0} a_1 a_2 a_A^\dagger a_B^\dagger \ket{0} \\ &= 2E_A 2E_B (2\pi)^6 \qty(\delta^{(3)}\qty(\vb*{p}_A - \vb*{p}_1) \delta^{(3)}\qty(\vb*{p}_B - \vb*{p}_2) + \delta^{(3)}\qty(\vb*{p}_A - \vb*{p}_2)\delta^{(3)}\qty(\vb*{p}_B - \vb*{p}_1)). \end{align*}
\(+\)
First order: using the Wick's theorem we find \begin{align*} & _0\bra{\vb*{p}_1 \vb*{p}_2} T\qty({-i\frac{\lambda}{4!}\int \dd{^4 x}\phi_I^4 (x)}) \ket{\vb*{p}_A \vb*{p}_B}_0 \\ &= {_0 \bra{\vb*{p}_1 \vb*{p}_2} N\qty({-i\frac{\lambda}{4!}\int \dd{^4 x}\phi_I^4(x) + \text{contractions}}) \ket{\vb*{p_A}\vb*{p}_B}_0}. \end{align*}
- Contraction of type \({\color{blue}\phi}{\color{blue}\phi}{\color{magenta}\phi}{\color{magenta}\phi}\) (trivial again):
\(\times \Bigg(\)
\(+\)
\(\Bigg)\)
- Contraction of type \({\color{blue}\phi}{\color{blue}\phi}{\phi}{\phi}\): the two uncontracted \(\phi\)'s should have one contracted to the bra and one to the ket. Trivial again.
\(+\)
\(+\)
\(+\)
- Contraction of type \(\phi\phi\phi\phi\), i.e. all \(\phi\)'s are contracted to the bra and ket: \begin{align*} &(4!)\cdot \qty(-i\frac{\lambda}{4!})\int \dd{^4 x} e^{-i(p_A + p_B - p_1 - p_2)\cdot x} \\ &= -i\lambda (2\pi)^4 \delta^{(4)}\qty(p_A + p_B - p_1 - p_2). \end{align*}
With the definition of \(\mathcal{M}\) we find that \(\mathcal{M} = -\lambda\).
\[ \begin{align*} H &= H_{\text{Dirac}} + H_{\text{Klein-Gordon}} + H_{\text{int}} \\ &= H_{\text{Dirac}} + H_{\text{Klein-Gordon}} + \int \dd{^3 x} g\overline{\psi}\psi\phi. \end{align*} \]
\({\color{blue}\phi}(x){\color{blue}\phi}(y) =\) \(\displaystyle = \frac{i}{q^2 - m_\phi^2 + i\epsilon}{};\)
\({\color{blue}\psi}(x){\color{blue}\overline{\psi}}(y) =\) \(\displaystyle = \frac{i(\unicode{x2215}\kern-.5em {p} + m)}{p^2 - m^2 + i\epsilon}{}.\)
We consider \[ \mathrm{fermion}(p) + \mathrm{fermion}(k) \longrightarrow \mathrm{fermion}(p') + \mathrm{fermion}(k'). \]
- Lowest order: \[ _0\bra{\vb*{p}',\vb*{k}'} T\qty({\frac{1}{2!}(-ig) \int \dd{^4 x} \overline{\psi}_I \psi_I \phi_I (-ig) \int \dd{^4 y} \overline{\psi}_I \psi_I \phi_I}) \ket{\vb*{p},\vb*{k}}_0. \]
- Implicitly we assocaite spins \(s, r, s', r'\) to the momenta.
- We drop the factor \(1/2!\) for any diagrams since we could interchange \(x\) and \(y\).
- Contractions:
- \[ \bra{0}{\color{blue} a_{\vb*{k}'}}{\color{darkcyan} a_{\vb*{p}'}} {\color{blue} \overline{\psi}_x} {\color{magenta} \psi_x} {\color{darkcyan} \overline{\psi}_y} {\color{orange} \psi_y} {\color{orange}a_{\vb*{p}}^\dagger} {\color{magenta} a_{\vb*{k}}^\dagger}\ket{0}. \]
- Move \({\color{darkcyan} \psi_y}\) two spaces to the left.
- Factor: \((-1)^2 = +1\).
- \[ \bra{0}{\color{darkcyan} a_{\vb*{k}'}}{\color{blue} a_{\vb*{p}'}} {\color{blue} \overline{\psi}_x} {\color{magenta} \psi_x} {\color{darkcyan} \overline{\psi}_y} {\color{orange} \psi_y} {\color{orange}a_{\vb*{p}}^\dagger} {\color{magenta} a_{\vb*{k}}^\dagger}\ket{0}. \]
- Move \({\color{darkcyan} \psi_y}\) one spaces to the left.
- Factor: \(-1\).
Conclusion:
\(i\mathcal{M} =\)
\(+\)
\begin{align*} &= (-ig^2) \qty( \overline{u}\qty(p') u\qty(p) \frac{1}{(p'-p)^2 - m_\phi^2} \overline{u}\qty(k') u\qty(k) - \overline{u}\qty(p') u\qty(k) \frac{1}{(p'-k)^2 - m_\phi^2} \overline{u}\qty(k') u\qty(p) ). \end{align*}
Typo: wavy lines should be replaced with dashed lines here.
\[ H_{\text{int}} = \int \dd{^3 x} e\overline{\psi}\gamma^\mu \psi A_\mu. \]
We consider \[ \mathrm{fermion}(p) + \mathrm{fermion}(k) \longrightarrow \mathrm{fermion}(p') + \mathrm{fermion}(k'). \]
\(i\mathcal{M} =\)
\begin{align*} &= (-ie)^2 \overline{u}\qty(p') \gamma^\mu u\qty(p) \frac{-ig_{\mu\nu}}{\qty(p'-p)^2}\overline{u}\qty(k')\gamma^\nu u\qty(k). \end{align*}
![]() |
Quantum Field Theory (IV) | |
Renormalization |
See this page to add a new quiz and to edit existing quizzes.
To add a Japanese verb to the quizzes, view this page.
This post is not yet done.
Let \([(x_0,y_0,z_0)]\) be a point in \(P_2(k)\). We define an affine local coordinate about it by \[ \varphi(\Phi^{-1}(x,y,1)) = (x,y) \] where \(\Phi\in\mathrm{GL}(3,k)\) and \((x_0,y_0,z_0) = \Phi^{-1}(0,0,1)\).
A homogeneous polynomial \(F\) may be made into a function on \(P_2(k)\) by \[ f(x,y) = F(\Phi^{-1}(x,y,1)). \]
With \(\Phi = \mathbb{1}\) we get the canonical coordinate \[ (x,y,z) \rightarrow (\frac{x}{z}, \frac{y}{z}). \]
With \[ \Phi = \begin{pmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{pmatrix} \] we get a shift \[ (x,y,1) \rightarrow (x-x_0, y-y_0). \] Under this prescription, we have \[ f(x,y) = F(x+x_0, y+y_0, 1). \]
With \[ \Phi = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] We get a permutation \[ (x,1,w) \rightarrow (w,x). \] Under this prescription, we have \[ f(x,y) = F(y,1,x). \]
A plane curve or a projective plane curve is a nonzero homogeneous polynomial \(F\in k[x,y,z]_d\) for some \(d>0\). The locus \[ F(K) = \set{(x,y,w) | F(x,y,w) = 0}. \] where \(K\) is an extension of \(k\) is well defined.
In a specific affine coordinate about \([(x_0,y_0,z_0)]\) we have \[ f(x,y) = F(\Phi^{-1}(x,y,1)) = f_0 + f_1 + \cdots + f_d. \] If \([(x_0,y_0,w_0)]\in F(K)\) then \(f_0 = 0\). \([(x_0,y_0,w_0)]\) is said to be a singular point if \(f_1\) is the zero polynomial.
\(F\) over \(k\) is said to be nonsingular or smooth if \(F\) is nonsingular at every point of \(F(\overline{k})\) where \(\overline{k}\) is the algebraic closure of \(\vb*{k}\).
Let \[ F(x,y,w) = x^2y + xyw + w^3 \] and \(w_0=1\). With \(\Phi\) defined as in this example we obtain \begin{align*} f(x,y) &= (x_0^2 y_0 + x_0 y_0 + 1) \\ &{\phantom{{}={}}} + (x_0^2 y + 2x_0y_0x + x_0y + y_0x) \\ &{\phantom{{}={}}} + (y_0x^2 + 2x_0xy + xy) \\ &{\phantom{{}={}}} + (x^2y). \end{align*} If \((x_0,y_0,w_0)\in F(K)\) then \(f_0=0\). \((x_0,y_0,w_0)\) is singular only if \((x_0,y_0) = (0,0)\) or \((x_0,y_0) = (-1,0)\), none of which is in \(F(K)\).
Proposition. Suppose \(F\) and \(G\) are two plane curves. If \((x_0,y_0,z_0)\) is in \(F(k)\cap G(k)\) then \((x_0,y_0,z_0)\) is a singular point of \(FG\).
Bézout's Theorem. Let \(F\) and \(G\) be plane curves of degree \(m\) and \(n\) respectively, Then \(F(\overline{k})\) and \(G(\overline{k})\) is nonempty. If it has more than \(mn\) points then \(F\) and \(G\) have as a common factor some homogeneous polynomial of degree \(>0\).
Corollary. If \(F\) is a plane curve and reducible over \(\overline{k}\). Then the factors are homogeneous polynomials, and \(F\) is singular.
\(f_1\) may be lift back to a homogeneous function of degree \(1\) on \((x,y,w)\) and is called the tangent line to \(F\) at \((x_0,y_0,z_0)\).
Proposition. Let \(F\) be a plane curve over \(k\). If \((x_0,y_0,z_0)\) is on the curve, then \((x_0,y_0,z_0)\) is nonsingular if and only if at least one of \(\displaystyle \pdv{F}{x}, \pdv{F}{y}, \pdv{F}{w}\) is nonzero at \((x_0,y_0,z_0)\). The tangent line is given by \[ L = \qty(\pdv{F}{x})_{(x_0,y_0,z_0)} x + \qty(\pdv{F}{y})_{(x_0,y_0,z_0)} y + \qty(\pdv{F}{z})_{(x_0,y_0,z_0)} z. \]
Let \(Q\) denote the homogeneous quadratic polynomial derived from \(f_2\).
Proposition. Suppose the characteristic of \(k\) is not \(2\). Let \(F\) be a plane curve over \(k\) of degree \(d\) and \((x_0,y_0,z_0)\) be a nonsingular point on the curve. Then \[ 2Q(x,y,w) = \begin{pmatrix} x & y & w \end{pmatrix} H \begin{pmatrix} x\\ y\\ w \end{pmatrix} - 2(d-1) L'_\Phi(x,y,w) L(x,y,w) \] where \(H\) is the Hessian matrix of \(F\) at \((x_0,y_0,z_0)\) and \(L'_\Phi(x,y,w)\) is a line with \(L'_\Phi(x_0,y_0,w_0) = 1\).
We demand that \(\vb*{\alpha}\) and \(\beta\) satisfy the commutation relations \begin{align*} \beta^2 &= \mathbb{1}; \\ \qty{\alpha_i,\beta} &= 0; \\ \qty{\alpha_i,\alpha_j} &= \mathbb{1}\delta_{ij}. \end{align*} A conventional representation is given by \[ \vb*{\alpha} = \begin{pmatrix} 0 & \vb*{\sigma} \\ \vb*{\sigma} & 0 \end{pmatrix};\quad \beta = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}. \] Now we have the Dirac equation \[ i\hbar\pdv{{\psi}}{t} = (c\vb*{\alpha}\cdot \vb*{p} + \beta mc^2){\psi}. \]
Under the interpretation \[ \rho = \psi^\dagger \psi;\quad \vb*{j} = \psi^\dagger \vb*{\alpha} \psi; \] the continuity equation \[ \pdv{\rho}{t} + \div \vb*{j} = 0 \] holds.
The Dirac equation of a particle in a electromagnetic field is written as \[ i\hbar\pdv{\psi}{t} = \qty[c\vb*{\alpha}\cdot\qty(\vb*{p} - q\vb*{A}/c)+\beta mc^2 + q\phi]\psi. \]
In the following we set \(\phi = 0\). Writing \(\psi(t) = \psi e^{-iEt/\hbar}\) we get \[ (c\vb*{\alpha}\cdot \vb*{\pi} + \beta mc^2)\psi = E\psi, \] where \(\vb*{\pi} = \vb*{p} - q\vb*{A}/c\) is the kinetic momentum.
Let \(\displaystyle \psi = \begin{pmatrix}\chi \\ \Phi\end{pmatrix}{}\) where \(\chi\) is called the large component and \(\Phi\) the small component. The Dirac equation is rewritten as
\begin{align*} (\vb*{\sigma}\cdot \vb*{A})(\vb*{\sigma}\cdot \vb*{B}) &= \vb*{A}\cdot \vb*{B} + i\vb*{\sigma}\cdot \vb*{A}\times \vb*{B};\\ \vb*{\pi} \times \vb*{\pi} &= \frac{iq\hbar}{c}\vb*{B}. \end{align*}
\begin{align*} \chi &= \qty(\frac{c\vb*{\sigma}\cdot \vb*{\pi}}{E-mc^2})\Phi; \\ \Phi &= \qty(\frac{c\vb*{\sigma}\cdot \vb*{\pi}}{E+mc^2})\chi. \end{align*}
Let \(E_S = E - mc^2\) denote the energy that appeared in the Schrödinger equation. In the nonrelativistic limit we get \[ \qty[\frac{(\vb*{p} - q\vb*{A}/c)^2}{2m} - \frac{q\hbar}{2mc}\vb*{\sigma}\cdot \vb*{B}] \chi = E_S \chi. \]
Let \(V\) denote the Coulomb potential in the hydrogen atom. The Dirac equation is rewritten as \begin{align*} \Phi &= \qty(\frac{c\vb*{\sigma}\cdot \vb*{p}}{E-V+mc^2})\chi; \\ (E-V-mc^2) &= c\vb*{\sigma}\cdot \vb*{p}\qty[\frac{1}{E-V+mc^2}]c\vb*{\sigma}\cdot \vb*{p}\chi. \end{align*} In the nonrelativistic limit we keep the \((E_S - V)\) on the denominator on the RHS to the first order and find \[ E_S \chi = H\chi = \qty[\frac{\vb*{p}^2}{2m} + V - \frac{\vb*{\sigma}\cdot \vb*{P}(E_S -V)\vb*{\sigma}\cdot \vb*{P}}{4m^2c^2}]\chi. \] To retain the conservation of probability and to modify \(H\) into a Hermitian operator, we solve for \[ \chi_S = \qty(1+\frac{\vb*{p}^2}{8m^2c^2})\chi \] instead of \(\chi\). The equation then becomes (working to order \(\alpha^4\)) \[ E_S \chi_S = H_S \chi_S = \qty(H + \qty[\frac{\vb*{p}^2}{8m^2c^2},V]). \] Approximate to order \(\alpha^4\) we find \begin{align*} H_S &= \frac{\vb*{p}^2}{2m} + V - \frac{\vb*{p}^4}{8m^3c^2} - \frac{i\vb*{\sigma}\cdot \vb*{p}\times \qty[\vb*{p}, V]}{4m^2c^2} + \qty{-\frac{\vb*{p}\cdot \qty[\vb*{p},V]}{4m^2c^2}+\frac{\qty[\vb*{p}\cdot \vb*{p},V]}{8m^2c^2}} \\ &= \frac{\vb*{p}^2}{2m} + V - \frac{\vb*{p}^4}{8m^3c^2} + \frac{e^2}{2m^2c^2r^2}\vb*{S}\cdot \vb*{L} + \frac{e^2\hbar^2 \pi}{2m^2 c^2}\delta^3(\vb*{r}) \end{align*} These items accounts for \(T\), \(V\), relativistic \(T\), spin-orbit interaction, and the Darwin term sequentially.
/**
* Invoked if both children of a node are black.
*/
void handleReorient( const Comparable & item )
{
current->color = RED;
current->left->color = BLACK;
current->right->color = BLACK;
if ( parent->color = RED ) // rotate
{
grand->color = RED;
if ( item < grand->element != item < parent->element ) // rotate twice
parent = rotate( item, grand );
current = rotate( item, great );
current->color = BLACK;
}
header->right->color = BLACK;
}
The solution of scattering by a potential \(V(r)\) has the form \[ \psi_k \xrightarrow[r\rightarrow\infty]{} e^{ikz} + f(\theta,\varphi)\frac{e^{ikr}}{r}, \] where \(f\) is called the scattering amplitude. The cross section is given by \[ \dv{\sigma}{\Omega} = \abs{f(\theta,\varphi)}^2. \]
Fermi's Golden Rule states that the transition rate is given by \[ \Gamma_{i\rightarrow f} = \frac{2\pi}{\hbar}\abs{\bra{f}V\ket{i}}^2\rho(E_f). \]
The S Matrix is the operator defined by \[ S = \lim_{\substack{t_f \rightarrow \infty\\ t_i\rightarrow -\infty}} U(t_f,t_i). \]
With the Fermi's golden rule the transition rate is found to be \begin{align*} R_{i\rightarrow \dd{\Omega}} &= \frac{2\pi}{\hbar}\abs{\bra{\vb*{p}_f}V\ket{\vb*{p}_i}}^2 \mu p_i \dd{\Omega}. \end{align*}
The incoming probability current is given by \[ j_i = \frac{\hbar k}{\mu}\qty(\frac{1}{2\pi\hbar})^3, \] from which we find that the differential cross section is given by \[ \dv{\sigma}{\Omega}\dd{\Omega} = \frac{R_{i\rightarrow \dd{\Omega}}}{j_i}, \] i.e. \begin{equation} \label{eq:diff_cross_sec} \dv{\sigma}{\Omega} = \abs{\frac{\mu}{2\pi\hbar^2}\int e^{-i\vb*{q}\cdot \vb*{r}'}V(\vb*{r}')\dd{^3 \vb*{r}'}}^2, \end{equation} where \(\hbar \vb*{q} = \vb*{p}_f - \vb*{p}_i\).
I am I little bit confused by Shankar's normalization. One may arrive at exactly the same result as in \eqref{eq:diff_cross_sec} with the conventional box normalization.
From \eqref{eq:diff_cross_sec} we infer that (up to a phase factor) \[ f(\theta,\varphi) = -\frac{\mu}{2\pi\hbar^2} \int e^{-i\vb*{q}\cdot\vb*{r}'}V(\vb*{r}')\dd{^3\vb*{r}'}. \]
In particular, for a central potential \(V(r)\) we have \[ f(\theta) = -\frac{2\mu}{\hbar^2}\int \frac{\sin qr'}{q}V(r')r'\dd{r'}. \]
For the Yukawa potential \[V(r) = \frac{g e^{-\mu_0 r}}{r}{}\] we find \[ \dv{\sigma}{\Omega} = \frac{4\mu^2 g^2}{\hbar^4\qty[\mu_0^2 + 4k^2\sin^2\qty(\theta/2)]^2}. \] Let \(g = Ze^2\) and \(\mu_0 = 0\), we find the differential cross section for Coulomb scattering \[ \dv{\sigma}{\Omega} = \frac{(Ze^2)^2}{16E^2\sin^4\qty(\theta/2)}. \]
We rewrite the scattering problem as \[ (\grad^2 + k^2)\psi_k = \frac{2\mu}{\hbar^2}V(r)\psi_k. \] The solution may be obtained using the Green's function by \[ \psi_{k}(r) = e^{i\vb*{k}\cdot\vb*{r}} + \frac{2\mu}{\hbar^2} \int G^0(\vb*{r},\vb*{r}')V(\vb*{r}')\psi_k(\vb*{r}')\dd{^3 \vb*{r}'}, \] where \(G^0\) is the solution to \[ (\grad^2 + k^2) G^0(\vb*{r},\vb*{r}') = \delta^3(\vb*{r} - \vb*{r}'). \] By demanding \(G(\vb*{r},\vb*{r}')\) be out-going we obtain \[ G(\vb*{r},\vb*{r}') = -\frac{e^{ik\abs{\vb*{r} - \vb*{r}'}}}{4\pi \abs{\vb*{r} - \vb*{r}'}}. \]
The operator \(\grad^2 + k^2\) is not invertible since \(e^{ikz}\) is in the null space thereof. Adding a \(i\epsilon\) we obtain a operator \(\grad^2 + k^2 + i\epsilon\) invertible in the physical Hibert space since elements in its null space diverges at infinity. A positive \(\epsilon\) happened to yield the retarded Green's function, while a negative \(\epsilon\) yields the advanced Green's functions.
To the first order we recover \[ f(\theta,\varphi) = -\frac{2\mu}{4\pi\hbar^2} \int e^{-i(\vb*{k}_f - \vb*{k}_i)\cdot \vb*{r}'}V(\vb*{r}')\dd{^3\vb*{r}'}. \]
For the spherical Bessel function we have the asymptotic formula \begin{align*} j_l(kr) &\xrightarrow[r\rightarrow\infty]{}\frac{\sin(kr - l\pi/2)}{kr}; \\ n_l(kr) &\xrightarrow[r\rightarrow\infty]{}-\frac{\cos(kr - l\pi/2)}{kr}. \end{align*}
We expand \(f\) in terms of Legendre Polynomials \[ f(\theta,k) = \sum_{l=0}^\infty (2l+1)a_l(k) P_l(\cos\theta) \] as well as the incident wave \[ e^{ikz} = \sum_{l=0}^\infty i^l (2l+1) j_l(kr) P_l(\cos\theta), \] which consists of an incoming and an outgoing spherical wave. By allowing a phase shift in \[ R_l(l) = \frac{U_l(r)}{r} \xrightarrow[r\rightarrow\infty]{} \frac{A_l \sin \qty[kr - l\pi/2 + \delta_l(k)]}{r} \] and demanding the amplitude of incoming spherical wave be the same as in \(e^{ikz}\) we find \[ \psi_{k}(\vb*{r}) = e^{ikz} + \qty[\sum_{l=0}^\infty (2l+1)\qty(\frac{e^{2i\delta_l} - 1}{2ik})P_l(\cos\theta)]\frac{e^{ikr}}{r}. \] Note that from the ansatz of \(R_l\) the S matrix in the basis of \((k,l,m)\) where \(m=0\) is found to be \[ S_l(k) = e^{2i\delta_l(k)}. \] From the expression of \(\psi_k\) we deduce \[ a_l(k) = \frac{e^{2i\delta_l} - 1}{2ik} = \frac{e^{i\delta_l}\sin\delta_l}{k}, \] whence we obtain the total cross section \[ \sigma = \frac{4\pi}{k^2} \sum_{k=0}^\infty (2l+1)\sin^2\delta_l = \frac{4\pi}{k^2}\Im f(0), \] where the last equality gives the optical theorem.
For the potential \[ V(r) = \begin{cases} \infty, & \text{if }r<r_0,\\ 0, & \text{if }r>r_0 \end{cases} \] we have the free particle solution \[ R_l(r) = A_l j_l(kr) + B_l n_l(kr) \] for \(r>r_0\) subjected to the boundary condition \(R_l(r_0) = 0\). The phase shift is found by using the asymptotic formulae of \(j_l\) and \(n_l\) to be \[ \delta_l = \arctan \frac{j_l(kr_0)}{n_l(kr_0)}. \] In particular, for \(k\ll 1\) we have \(\delta_l \approx (kr_0)^{2l+1}\).
By knowledgebly applying integral transforms, some integrals could be evaluated much more easily.
We should see below that with the help of Fourier transformation, the evaluation of the Coulomb integral between the two electrons becomes much easier.
We use the following trial wavefunction \[ f(\vb*{r}_1,\vb*{r}_2) = \frac{Z^3}{a_0^3\pi}e^{-Zr_1/a_0}e^{-Zr_2/a_0}. \] With the Fourier transforms \begin{align*} \int \dd{^3\vb*{r}} e^{-\alpha r} e^{-i\vb*{k}\cdot \vb*{r}} &= \frac{8\pi \alpha}{(k^2+\alpha^2)^2}; \\ \int \dd{^3\vb*{r}} \frac{1}{r} e^{-i\vb*{k}\cdot \vb*{r}} &= \frac{4\pi}{k^2} \end{align*} we obtain \begin{align*} \int \dd{^3\vb*{r}_1}\dd{^3\vb*{r}_2} &= \qty[e^{-\alpha r}*\frac{1}{r}*e^{-\alpha r}](0) \\ &= \mathcal{F}^{-1}\qty[\frac{8\pi \alpha\cdot 8\pi\alpha\cdot 4\pi}{(k^2+\alpha^2)^2\cdot k^2}](0) \\ &= \frac{1}{(2\pi)^3}\int_0^\infty \dd{k}\cdot 4\pi \cdot \frac{256\pi^3\alpha^2}{(k^2+\alpha^2)^4} \\ &= \frac{20\pi^2}{\alpha^5}. \end{align*} The energy is found to be \[ E = (2c^2-8c+\frac{5}{4}c)E_0 \] where \(-E_0\) is the ground state energy of the hydrogen atom.
Minimizing \(E\) we find that \[ E_{\mathrm{min}} = -\frac{729}{128}E_0 = -77.5\;\text{eV} \] with \(\displaystyle Z = \frac{27}{16} = 1.69\).
A useful Japanese dictionary that contains etymology is found here.
The environment variable may be assigned by export root_path=root@zechen.site/root/MyPersonalWebsite/public
The infinitude of prime numbers had been well known since Euclid. A stronger result is that the following series diverges: \[\sum_p \frac{1}{p} \rightarrow \infty.\]
Suppose the series above converges, i.e. there is a \(q\) such that \[\sum_{p>q} \frac{1}{p} < \frac{1}{2}.\] Then we let \(p_1,\cdots,p_m\) denotes all prime numbers less than \(q\), and let \[Q = p_1 \cdots p_m.\] Now since \(\{1+nQ\}\) are not divisible by \(p_1,\cdots,p_m\), we find that \[\sum_{n=1}^r \frac{1}{1+nQ} \le \sum_{i=1}^\infty (\sum_{p>q} \frac{1}{p})^i\] since every item on the LHS is included in the summation on the RHS. This yields a contradiction.
We define \(\operatorname{id}_k(n) = n^k\), and \(\operatorname{id}(n) = n\).
Definition. \(\displaystyle (f * g)(n) = \sum_{d | n} f(d) g\qty(\frac{n}{d}).\)
Under this definition, the commutation law and the association law hold. \[f*g = g*f,\quad (f*g)*h = f*(g*h).\] The Dirichlet inverse of \(f\) is denoted by \(f^{-1}\) and satisfies \(f^{-1}*f = I\). If \(f(1) \neq 0\), then the inverse exists and is unique.
Definition. The derivative of a arithmetic function is defined by \(f'(n) = f(n)\log n\), for \(n\ge 1\).
Many properties of the derivative in calculus hold for the arithmetic derivative as well.
Multiplicative functions make up a subgroup of arithmetic functions under the binary operation defined by the Dirichlet convolution, i.e. if \(f*g\) is multiplicative if both \(f\) and \(g\) are, and \(f^{-1}\) is multiplicative if \(f\) is.
Examples of multiplcative functions includes
Theorem. Let \(f\) be multiplicative. Then \(f\) is completely multiplicative if and only if \(f^{-1}(n) = \mu(n) f(n)\).
Theorem. If \(f\) is multiplicative, then \[\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1-f(p)).\]
Definition. \(\displaystyle I(n) = \qty(n) = \begin{cases} 1, & \text{if } n = 1; \\ 0, & \text{if } n > 1.\end{cases}{}\)
This is the analogy of the \(\delta\)-function in number theory. \[I * f = f * I = f.\]
Definition. \(\mu(1) = 1\), and for \(n = p_1^{\alpha_1}\cdots p_k^{\alpha_k}>1\) we define \[\mu(n) = \begin{cases} (-1)^k, & \text{if } \alpha_1 = \cdots = \alpha_k = 1; \\ 0, & \text{otherwise}. \end{cases}{}\]
Theorem. If \(n\ge 1\) we have \[(1 * \mu)(n) = \sum_{d | n} \mu(d) = I(n) = \qty[\frac{1}{n}] = \begin{cases} 1, & \text{if } n = 1; \\ 0, & \text{if } n > 1. \end{cases}{}\]
Definition. \(\varphi(n)\) is defined to be the number of of integers in \(1,\cdots,n\) that's coprime with \(n\).
Theorem. If \(n\ge 1\) we have \[(1 * \varphi)(n) = \sum_{d | n} \varphi(d) = n.\]
Theorem. If \(n\ge 1\) we have \[(\mu*\operatorname{id})(n) = \sum_{d | n}\mu(d)\frac{n}{d} = \varphi(n).\]
Theorem. \(\varphi\) could be written as the product form \[\varphi(n) = n \prod_{p | n} \qty(1-\frac{1}{p}).\]
Some properties of the totient function are given below.
Theorem. If \(f = 1 * g\), then \(g = f * \mu\).
Definition. \[ \displaystyle \Lambda(n) = \begin{cases}\log p, & \text{if } n = p^m, \text{ where } p \text{ is a prime}, \text{ and } m\ge 1; \\ 0, &\text{otherwise}.\end{cases}{} \]
Theorem. If \(n\ge 1\), \(\displaystyle (1')(n) = \log n = 1 * \Lambda = \sum_{d|n} \Lambda(d)\).
Theorem. If \(n\ge 1\), \(\displaystyle \Lambda(n) = \mu * (1') = -\sum_{d|n} \mu(d) \log d\).
Definition. \(\lambda(1) = 1\), and for \(n = p_1^{\alpha_1}\cdots p_k^{\alpha_k}>1\) we define \[\lambda(n) = (-1)^{\alpha_1 + \cdots + \alpha_k}.\]
Theorem. For \(n>1\), we have \[ (1 * \lambda)(n) = \sum_{d|n} \lambda(d) = \begin{cases} 1, &\text{if } n \text{ is a perfect square}; \\ 0, & \text{otherwise}. \end{cases} \] We have also \(\lambda^{-1}(n) = \mu^2(n)\).
Definition. \(\sigma_k(n) = \operatorname{id}_k * 1 = \sum_{d|n} d^k\).
In particular, we denote \(\sigma_0(n)\) by \(d(n)\), which counts the number of divisors, and \(\sigma_1(n)\) by \(\sigma(n)\), which is the sum of all divisors.
Theorem. The inversion of the divisor function is given by \[\sigma_k^{-1} = (\mu \operatorname{id}_k)*\mu = \sum_{d|n} d^k \mu(d) \mu\qty(\frac{n}{d}).\]
In the following context, \(F\) is a function on \((0,+\infty)\) that satisfies \(F(x) = 0\) for \(x\in (0,1)\).
Definition. \(\displaystyle (\alpha\circ F)(x) = \sum_{n\le x} \alpha(n) F\qty(\frac{x}{n})\).
Theorem. Let \(\alpha\) and \(\beta\) be arithmetic functions. Then \[ \alpha\circ(\beta\circ F) = (\alpha*\beta)\circ F. \]
Theorem. The generalized inversion formula is given by \[ G = \alpha \circ F \Leftrightarrow F = \alpha^{-1}\circ G. \]
Theorem. For a completely multiplcative \(\alpha\) we have \[ G = \alpha\circ F \Leftrightarrow F = (\mu\alpha)\circ G. \]
Definition. Let \(f\) be a arithmetic function. We define the Bell series of \(f\) modulo \(p\) by the formal power series \[ f_p(x) = \sum_{n=0}^\infty f(p^n) x^n. \]
Examples of Bell series are listed below.
Theorem. Let \(h = f*g\). Then \[h_p(x) = f_p(x) g_p(x).\]
We have the following table of convolution relations of various arithmetic functions.
\(f*g\) | \(I\) | \(1\) | \(\operatorname{id}{}\) | \(\varphi\) | \(\mu\) |
\(I\) | \(I\) | \(1\) | \(\operatorname{id}{}\) | \(\varphi\) | \(\mu\) |
\(1\) | \(1\) | \(d\) | \(\sigma\) | \(\operatorname{id}{}\) | \(I\) |
\(\operatorname{id}{}\) | \(\operatorname{id}{}\) | \(\sigma\) | \(\sigma\cdot \operatorname{id}{}\) | \(\varphi\) | |
\(\varphi\) | \(\varphi\) | \(\operatorname{id}{}\) | |||
\(\mu\) | \(\mu\) | \(I\) | \(\varphi\) |
Welcome to my home page. I am Ze Chen from the University of Science and Technology of China and have written some notes on the topics that I found interesting. Feel free to leave a comment on my posts, or to create your own posts. You may speak anonymously, or after signing up (takes only 20 seconds, no email verification required) if you wish.
If you spot any mistakes or have advice on improvements, comment under this post or under the post where the mistake lies. Your feedback is cherished and will be really helpful in improving the user experience of all visitors.
The following is an index of the notes I've written.
![]() |
Quantum Field Theory (I) | |
Mathematical Prerequisites |
![]() |
Quantum Field Theory (II) | |
Quantization of Fields |
![]() |
Quantum Field Theory (III) | |
Feynman Diagrams |
![]() |
Quantum Field Theory (IV) | |
Renormalization |
![]() |
Quantum Field Theory (V) | |
Applications of Feynman Diagrams |
![]() |
Representation of Finite Groups | |
ねぇ、あなたは何色になりたい? |
Just for fun. Don't take them seriously.
Also a reminder to myself.
The following code
%%% NAV
%%% NAV-TAG Tag1
content 1.
%%% NAV-TAG-END
%%% NAV-TAG Tag2
content 2.
%%% NAV-TAG-END
%%% NAV-END
renders
<summary>
tag?The following code
+++ Title
content.
+++
renders
content.
<span>
with style?Due to a conflict between plugins, the syntax for inserting a <span>
is a little complicated.
[content]{}{ style="color: red;" }
renders content.
By pressing <Ctrl> + <Enter>
or by clicking the button.
If there are a few posts on your page, you may click the button to open a specific post in a new tab.
Pros Markdown interfaces better with HTML.
It's crude on its own but is capable of utilizing the powerful functions provided by HTML and JavaScript.
The ability to render <summary>
tag is one of the examples where Markdown (with a lot of plugins)
is able to render some interactive controls that are impossible to be implemented with LaTeX.
Cons LaTeX offers much more abundant packages to typeset diagrams (circuits diagrams, Feynman diagrams, commutative diagrams, etc.). These figures are compiled with LaTeX before uploaded and inserted into my notes.
I followed the procedure described here.
Go to the Control Panel.
Scribble.findOneAndRemove({uuid:"e9dc6366-7f90-43ac-9ac4-4857f2746fc0"});
The following a list of improvements yet to be done on this site.
grep
, cut
, sed
, and awk
grep
grep
stands for "global regular expression print", which basically searches for the lines that contains the pattern given. Let the file hosts
be given below, copied from here.
# Copyright (c) 1993-2009 Microsoft Corp.
#
# This is a sample HOSTS file.
#
# For example:
#
# 102.54.94.97 rhino.acme.com # source server
# 38.25.63.10 x.acme.com # x client host
# localhost name resolution is handled within DNS itself.
# 127.0.0.1 localhost
# ::1 localhost
192.168.168.200 doug.LoweWriter.com # Doug’s computer
192.168.168.201 server1.LoweWriter.com s1 # Main server
192.168.168.202 debbie.LoweWriter.com # Debbie’s computer
192.168.168.203 printer1.LoweWriter.com p1 # HP Laser Printer
192.168.168.204 www.google.com # Google
Now we are going to find out all the lines that contains .com
. The following command
cat hosts | grep ".com"
prints
# 102.54.94.97 rhino.acme.com # source server
# 38.25.63.10 x.acme.com # x client host
192.168.168.200 doug.LoweWriter.com # Doug’s computer
192.168.168.201 server1.LoweWriter.com s1 # Main server
192.168.168.202 debbie.LoweWriter.com # Debbie’s computer
192.168.168.203 printer1.LoweWriter.com p1 # HP Laser Printer
192.168.168.204 www.google.com # Google
It accidentally includes the lines commented out as well. To exclude these, we use the regular expression with grep
by the -E
option.
cat hosts | grep -E "^[^#].*\.com"
The ouput now becomes
192.168.168.200 doug.LoweWriter.com # Doug’s computer
192.168.168.201 server1.LoweWriter.com s1 # Main server
192.168.168.202 debbie.LoweWriter.com # Debbie’s computer
192.168.168.203 printer1.LoweWriter.com p1 # HP Laser Printer
192.168.168.204 www.google.com # Google
cut
Now we want the IP addresses and the domain names only, leaving out the comments at the end of lines. The following cut
command does this job,
cat hosts | grep -E "^[^#].*\.com" | cut -d " " -f 1-2
which prints
192.168.168.200 doug.LoweWriter.com
192.168.168.201 server1.LoweWriter.com
192.168.168.202 debbie.LoweWriter.com
192.168.168.203 printer1.LoweWriter.com
192.168.168.204 www.google.com
cut -d " "
doesn't work like String.split()
in most programming languages.
It should be noted that, with cut -d " "
, every single space is counted as a delimiter. For example,
cat hosts | grep -E "^[^#].*\.com" | cut -d " " -f 1-3
prints
192.168.168.200 doug.LoweWriter.com
192.168.168.201 server1.LoweWriter.com s1
192.168.168.202 debbie.LoweWriter.com
192.168.168.203 printer1.LoweWriter.com p1
192.168.168.204 www.google.com
sed
sed
stands for "stream editor", with which we are able to make certain replacements. For example
cat hosts | grep -E "^[^#].*\.com" | cut -d " " -f 1-2 | sed 's/192\.168/255.255/'
prints
255.255.168.200 doug.LoweWriter.com
255.255.168.201 server1.LoweWriter.com
255.255.168.202 debbie.LoweWriter.com
255.255.168.203 printer1.LoweWriter.com
255.255.168.204 www.google.com
awk
awk
stands for "Aho, Weinberger, Kernighan", i.e. the authors. It's among the most powerful text processing tools. We may swap the two columns with it, using
cat hosts | grep -E "^[^#].*\.com" | cut -d " " -f 1-2 | awk '{ t = $1; $1 = $2; $2 = t; print }'
which prints
doug.LoweWriter.com 192.168.168.200
server1.LoweWriter.com 192.168.168.201
debbie.LoweWriter.com 192.168.168.202
printer1.LoweWriter.com 192.168.168.203
www.google.com 192.168.168.204
This post is devoted to numerical computations and focuses on numpy
and MATLAB
.
Array Creation and Array Transpose In MATLAB
, arrays are first-class objects. With numpy
, however, arrays should be created with the correct constructor.
import numpy as np
arr = np.array([[2, 3, 5, 7], [11, 13, 17, 19]])
arr
stores now \(\begin{pmatrix}2 & 3 & 5 & 7 \\ 11 & 13 & 17 & 19\end{pmatrix}{}\).
arr = arr.transpose()
arr
stores now \(\begin{pmatrix}2 & 11 \\ 3 & 13 \\ 5 & 17 \\ 7 & 19\end{pmatrix}{}\).
arr = [2, 3, 5, 7; 11, 13, 17, 19];
arr
stores now \(\begin{pmatrix}2 & 3 & 5 & 7 \\ 11 & 13 & 17 & 19\end{pmatrix}{ }\).
arr = arr';
arr
stores now \(\begin{pmatrix}2 & 11 \\ 3 & 13 \\ 5 & 17 \\ 7 & 19\end{pmatrix}{}\).
As a cyber-multilinguist, I frequently get confused by how different languages implement a certain operation. It is String.startsWith()
in Java
while String.startswith()
in python
. I have to look up the document to find out the correct spelling everytime. Sometimes the problem is even worse, especially when it comes to dealing with regex
. Languages adopt their own idiomatic usages and it's the programmers' duty to take note.
What do I do if the function returns a tuple or an array?
JavaScript supports object destructuring, which could be quite useful. However, since this feature exists only in one language, we don't put it here.
Another useful syntax of JavaScript is the object initializer, which allows shorthands like
let a = 1, b = 2, c = 3;
let d = {a, b, c};
How do I print a variable in a string?
In C++
, there is vector
as well as the build-in array. vector
is the first choice in most circumstances. Also note that in many functional programming languages, using loop on arrays may be deprecated. Seek map
or reduce
whenever possible!
Push Array push is among the most frequent operations.
std::vector<int> arr;
arr.push_back(10032);
arr = []
arr.append(10032)
let arr = []
arr.push(10032)
arr = [1, 2, 3];
arr = [arr, 10032];
brr = [1, 2, 3]';
brr = [brr; 10032];
Pattern Search What do you do if you are given a string like "length = 16"
?
import re
config = "length = 16"
regex = re.compile(r'(?P<key>[a-z]+)([\s])*=([\s])*(?P<val>\d+)')
groups = re.match(regex, config).groupdict()
print(groups["key"]) # "length"
print(groups["val"]) # "16"
let config = "length = 16";
let regex = /(?<key>[a-z]+)([\s])*=([\s])*(?<val>[\d]+)/;
let groups = config.match(regex).groups;
console.log(groups.key); // "length"
console.log(groups.val); // "16"
How do you dump an object into JSON, and vice versa?
How do you send a request and read the response?
For conversion in JavaScript, see parseInt vs unary plus, when to use which?
Background on Solid State Physics
Let \(\Omega\) denote the volume of a unit cell. We have \begin{align*} E &= E(\Omega), \\ P &= -\dv{E}{\Omega}, \\ B &= -\Omega \dv{P}{\Omega} = \Omega \dv[2]{E}{\Omega}, \end{align*} where \(B\) denotes the bulk modulus.
To predict the equilibrium volume \(\Omega^0\), i.e. where \(E\) attains its minimum, we may either
A quick review on quantum mechanics, including theories of Hilbert space and angular momentum, relativistic quantum mechanics, and some widgets of algebra.
Definition | \(\displaystyle \rho = \sum_j p_j \ket{\psi_j} \bra{\psi_j}{}\) |
Properties | \(\trace \rho = 1,\quad \rho \ge 0,\quad \rho^\dagger = \rho\) |
Expectation Value | \(\langle A \rangle = \trace (\rho A)\) |
Evolution | \(\displaystyle i\hbar\pdv{\rho}{t} = [{\color{red}{H, \rho}}],\quad \rho(t) = e^{-iHt/\hbar}\rho(0)e^{iHt/\hbar}{}\) |
\[\dv{t} \ket{\psi}\bra{\psi}{} = \qty(\dv{t} \ket{\psi})\bra{\psi}{} + \ket{\psi}\qty(\dv{t} \bra{\psi}){} = \qty[H,\ket{\psi}\bra{\psi}{}]. \]
Normalization | \(\begin{cases}a^\dagger_i\ket{\cdots,n_i - 1,\cdots} = \sqrt{n_i}\ket{\cdots,n_i,\cdots}{} \\ a_i\ket{\cdots,n_i,\cdots} = \sqrt{n_i}\ket{\cdots,n_i - 1,\cdots}{} \\ N_i = a_i^\dagger a_i \end{cases}{}\) | |
Commutators | Boson | Fermion |
\([a_i,a_i^\dagger] = \delta_{ij}{}\) | \(\{a_i,a_j^\dagger\} = \delta_{ij}{}\) |
Spin-1/2
\[S_x = \frac{\hbar}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}{}, \quad S_y = \frac{\hbar}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}{},\quad S_z = \frac{\hbar}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}{}\]
\[\ket{\vb*{S}\cdot \hat{\vb*{n}}; +} = \cos(\frac{\theta}{2})e^{-i\varphi/2}\ket{+} + \sin(\frac{\theta}{2})e^{-i\varphi/2}\ket{-}{}\]
Wigner-Eckart Theorem
\[\bra{\alpha',j'm'}T^{(k)}_q\ket{\alpha,jm} = \bra{jk;mq}\ket{jk;j'm'}\frac{\langle \alpha'j'\vert\vert T^{(k)} \vert\vert \alpha j\rangle}{\sqrt{2j+1}}{}\]
A quick review on analog and digital circuit.
Not Gate | Nor Gate |
![]() |
![]() |
Nand Gate | AOI Gate |
![]() |
![]() |
This post is not yet done.
他動詞五段ぁす/やす | 自動詞一段ぇる/える |
---|---|
溶かす | 溶ける |
砂糖を溶かす | 塩が溶ける |
逃す | 逃げる |
蝉を逃がす | 小鳥が逃げる |
出す | 出る |
船を出す | 月が出る |
枯らす | 枯れる |
植木を枯らす | 葉が枯れる |
増やす | 増える |
人数を増やす | 財産が増える |
他動詞五段 使役形ぁす | 自動詞五段 終止形ぅ |
---|---|
沸かす | 沸く |
湯を沸かす | 風呂が沸く |
乾かす | 乾く |
服を乾かす | 洗濯物が乾く |
喜ばす | 喜ぶ |
彼女を喜ばす | 子供が喜ぶ |
減らす | 減る |
体重を減らす | 収入が減る |
散らす | 散る |
花を散らす | 花が散る |
照らす | 照る |
舞台を照らす | 日が照る |
他動詞一段ぇる/える | 自動詞五段ぁる/わる |
---|---|
伝える | 伝わる |
用件を伝える | 命令が伝わる |
変える | 変わる |
戦術を変える | 顔色が変わる |
加える | 加わる |
危害を加える | 要素が加わる |
始める | 始まる |
戦争を始める | 工事が始まる |
他動詞一段ぇる | 自動詞五段ぅ |
---|---|
開ける | 開く |
目を開ける | 窓が開く |
届ける | 届く |
拾得物を届ける | 手が届く |
育てる | 育つ |
苗を育てる | 麦が育つ |
立てる | 立つ |
本を立てる | 電柱が立つ |
乗せる | 乗る |
荷物を乗せる | 子供が乗る |
寄せる | 寄る |
肩を寄せる | 船が寄る |
To be distinguished from the Porential Form. |
他動詞五段ぅ | 自動詞一段ぇる |
---|---|
抜く | 抜ける |
刀を抜く | 歯が抜ける |
解く | 解ける |
帯を解く | 緊張が解ける |
焼く | 焼ける |
草を焼く | 家が焼ける |
売る | 売れる |
商品を売る | 本が売れる |
外す | 外れる |
錠を離す | 障子が外れる |
離す | 離れる |
付箋を離す | 雀が離れる |
To be distinguished from the Porential Form. |
他動詞五段す | 自動詞五段る |
---|---|
返す | 返る |
借金を返す | 軍配が返る |
他動詞五段ぉす | 自動詞一段ぃる |
---|---|
起こす | 起きる |
倒木を起こす | 混乱が起きる |
他動詞 | 自動詞 |
---|---|
見る | 見える |
星空をみる | 星が見える |
Sorting is a common operation in many applications, and efficient algorithms to perform it have been developed.
Computer manufacturers of the 1960’s estimated that more than 25 percent of the running time of their computers was spent on sorting, when all their customers were taken into account. In fact, there were many installations in which the task of sorting was responsible for more than half of the computing time. From these statistics we may conclude that either
- there are many important applications of sorting, or
- many people sort when they shouldn’t, or
- inefficient sorting algorithms have been in common use.
— Sorting and Searching, Knuth
Quicksort is a comparison sort, meaning that it can sort items of any type for which a "less-than" relation (formally, a total order) is defined. Efficient implementations of Quicksort are not a stable sort, meaning that the relative order of equal sort items is not preserved.
/* This function takes last element as pivot, places
the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right
of pivot */
int partition (int arr[], int low, int high)
{
int pivot = arr[high]; // pivot
int i = (low - 1); // Index of smaller element
for (int j = low; j <= high- 1; j++)
{
// If current element is smaller than or
// equal to pivot
if (arr[j] <= pivot)
{
i++; // increment index of smaller element
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */
void quickSort(int arr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */
int pi = partition(arr, low, high);
// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
# Python program for implementation of Quicksort Sort
# This function takes last element as pivot, places
# the pivot element at its correct position in sorted
# array, and places all smaller (smaller than pivot)
# to left of pivot and all greater elements to right
# of pivot
def partition(arr, low, high):
i = (low-1) # index of smaller element
pivot = arr[high] # pivot
for j in range(low, high):
# If current element is smaller than or
# equal to pivot
if arr[j] <= pivot:
# increment index of smaller element
i = i+1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1)
# The main function that implements QuickSort
# arr[] --> Array to be sorted,
# low --> Starting index,
# high --> Ending index
# Function to do Quick sort
def quickSort(arr, low, high):
if len(arr) == 1:
return arr
if low < high:
# pi is partitioning index, arr[p] is now
# at right place
pi = partition(arr, low, high)
# Separately sort elements before
# partition and after partition
quickSort(arr, low, pi-1)
quickSort(arr, pi+1, high)
# Driver code to test above
arr = [10, 7, 8, 9, 1, 5]
n = len(arr)
quickSort(arr, 0, n-1)
print("Sorted array is:")
for i in range(n):
print("%d" % arr[i]),
# This code is contributed by Mohit Kumra
#This code in improved by https://github.com/anushkrishnav
Merge sort is an efficient, general-purpose, comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the order of equal elements is the same in the input and output.
void merge(int *,int, int , int );
void merge_sort(int *arr, int low, int high)
{
int mid;
if (low < high){
//divide the array at mid and sort independently using merge sort
mid=(low+high)/2;
merge_sort(arr,low,mid);
merge_sort(arr,mid+1,high);
//merge or conquer sorted arrays
merge(arr,low,high,mid);
}
}
// Merge sort
void merge(int *arr, int low, int high, int mid)
{
int i, j, k, c[50];
i = low;
k = low;
j = mid + 1;
while (i <= mid && j <= high) {
if (arr[i] < arr[j]) {
c[k] = arr[i];
k++;
i++;
}
else {
c[k] = arr[j];
k++;
j++;
}
}
while (i <= mid) {
c[k] = arr[i];
k++;
i++;
}
while (j <= high) {
c[k] = arr[j];
k++;
j++;
}
for (i = low; i < k; i++) {
arr[i] = c[i];
}
}
# Python program for implementation of MergeSort
def mergeSort(arr):
if len(arr) > 1:
# Finding the mid of the array
mid = len(arr)//2
# Dividing the array elements
L = arr[:mid]
# into 2 halves
R = arr[mid:]
# Sorting the first half
mergeSort(L)
# Sorting the second half
mergeSort(R)
i = j = k = 0
# Copy data to temp arrays L[] and R[]
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
# Checking if any element was left
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
# Code to print the list
def printList(arr):
for i in range(len(arr)):
print(arr[i], end=" ")
print()
Let \((\hat{\mathbf{x}},\hat{\mathbf{y}},\hat{\mathbf{z}})\) denote the spatial frame (does not rotate with the body) and \((\hat{\mathbf{x}}',\hat{\mathbf{y}}',\hat{\mathbf{z}}')\) denote the body frame.
The following two procedures of rotation are identical.
vs.
In particular, the point \((\theta,\varphi)\) on \(S^2\) may be obtained from both of the above procedures with \(\gamma = \varphi\) and \(\beta=\theta\).
This equivalence has applications in, for example, the Wigner \(D\) matrices.
This note is copied from Semicolons, colons, and dashes.
I bought shiny, ripe apples; small, sweet, juicy grapes; and firm pears.
I went to the grocery store today. I bought a ton of fruit; apples, grapes, and pears were all on sale.
But NEVER DO THIS:
I went to the grocery store today; I bought a ton of fruit; apples, grapes, and pears were all on sale.
We covered many of the fundamentals in our writing class: grammar, punctuation, style, and voice.
Life is like a puzzle: half the fun is in trying to work it out.
To Whom it May Concern: Please accept my application for the position advertised in the News and Observer.
NEVER DO THESE:
Using a colon between a verb and its object or complement: The very best peaches are: those that are grown in the great state of Georgia.
Using a colon between a preposition and its object: My favorite cake is made of: carrots, flour, butter, eggs, and cream cheese icing.
Using a colon after "such as," "including," "especially," and similar phrases: There are many different types of paper, including: college ruled, wide ruled, and plain copy paper.
After eighty years of dreaming, the elderly man realized it was time to finally revisit the land of his youth—Ireland.
To improve their health, Americans should critically examine the foods that they eat—fast food, fatty fried foods, junk food, and sugary snacks.
Even the simplest tasks—washing, dressing, and going to work—were nearly impossible after I broke my leg.
Mimi began to explain herself, saying, “I was thinking—” “I don’t care what you were thinking,” Rodolpho interrupted.